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Preface
This text is a practical, example-driven guide to introduce classical machine learning techniques
using the scikit-learn library designed for engineers with limited to no programming experi-
ence. This preface collects the essential housekeeping information for using this text.

Accompanying Video Lectures
Videos of lectures associated with this text are available as a playlist here.

Figure 1: Playlist of videos associated with this text.

Programming in Python
This text uses Python programmed though the Spyder IDE managed through the Anaconda plat-
form for the examples, leveraging the scikit-learn library to explain the topics discussed. To
assist readers of the text, a six part video series that walks the practitioner though this combination
of IDE and distribution manager is provided as a playlist here.

Figure 2: Playlist of videos for leaning how to program in Python using Spyder and Anaconda.
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Cover Art
The cover image, is a mid-1930s International Harvester C-series truck. Built between 1934 and
1936 at the company’s Springfield Works in Springfield, Ohio. Roughly 80,000 C-series trucks
where made during this short time. The C-series was International’s first line to feature an all-steel
cab and a host of mechanical upgrades over the prior W-series. This truck was photographed by
Ethan McNeese on Washington Island in Door County, Wisconsin in 2021.

The truck on the cover underscores the simple idea that a machine’s purpose is to turn raw input
into useful work. The same principle drives machine learning, where digital “machines” transform
data into insight and data-informed actions.

License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
(CC BY-SA 4.0). More information on the Attribution-ShareAlike 4.0 International license can
be found here. Unless otherwise denoted, all text, figures, diagrams, and photos used in this work
are the sole property of the authors and are released under CC BY-SA 4.0 both in part and in
whole. Reworks and redistributions of this work that fall within the CC BY-SA 4.0 licenses are
encouraged.

Source Code
The source code for this text is available here.

Questions and Contact Information
For questions, corrections, or requests, contact Austin Downey at austindowney@sc.edu.
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1 Basic Concepts in Machine Learning
Machine Learning (ML) is a method of data analysis that automates analytical model building. ML
is closely coupled to data science, as shown in figure 1.1, which is a multidisciplinary field that
utilizes scientific methods, processes, algorithms, and systems to extract knowledge and insights
from structured and unstructured data. It is based on the idea that systems can learn from data,
identify patterns, and make decisions with minimal human intervention. This section introduces
some foundational concepts in machine learning and its applications.

• ML is not creating robots: A common misconception is that machine learning is about
building robots. In reality, ML focuses on developing algorithms that can learn from and
make predictions or decisions based on data.

• The SPAM filter is one of the initial ML uses: One of the earliest and most common
applications of ML is the spam filter, which classifies emails as spam or not spam. This has
been followed by numerous other applications such as:

– Speech to text technology: Converting spoken language into written text, which is
used in virtual assistants and transcription services.

– Medical diagnostics: Assisting doctors by predicting diseases from medical images
and patient data.

• ML has lots of fundamental concepts (jargon): To effectively understand and apply ma-
chine learning, it’s essential to grasp several key concepts and terminologies, including:

– Supervised vs unsupervised learning: Supervised learning involves training a model
on labeled data, while unsupervised learning deals with data that has no labels and tries
to find hidden patterns.

Figure 1.1: Overlap between the fields of Artificial Intelligence (AI), Data science (DS), and the
core engineering disciplines of Civil, Mechanical, Electrical, and Chemical Engineering.
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Figure 1.2: Diagram of an “expert system” in AI, which is a computer program that simulates the
decision-making ability of a human expert by using a knowledge base and inference rules.

– Online versus batch learning: Online learning algorithms update the model incre-
mentally as new data arrives, whereas batch learning algorithms train the model using
the entire dataset at once.

– Instance-based vs model-based learning: Instance-based learning algorithms, such as
k-nearest neighbors, use specific instances to make predictions, whereas model-based
algorithms, like linear regression, build a model from the training data and use it to
make predictions.

1.1 Examples of Artificial Intelligence
The field of Artificial Intelligence (AI) encompasses a diverse array of technologies and method-
ologies aimed at enabling machines to perform tasks that typically require human intelligence.
This section explores various examples of AI, Machine Learning, and Deep Learning technolo-
gies, highlighting their distinct characteristics and applications.

1.1.1 Examples of Artificial Intelligence

Artificial Intelligence (AI) encompasses a wide range of technologies aimed at making machines
simulate human intelligence. Some examples include:

• Expert systems: Computer programs that simulate the decision-making ability of a human
expert by using a knowledge base and inference rules, as diagrammed in figure 1.2.

• Chatbots: Programs designed to simulate conversation with human users, especially over
the internet.

4
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Figure 1.3: A Symbolics Lisp Machine, a specialized hardware platform designed to run expert
systems which are a version of AI focusing on answering questions to challenging problems.a

1.1.2 Examples of Machine Learning

Machine Learning, as a subset of AI, involves algorithms that improve automatically through ex-
perience. Some common examples include:

• Linear regression: A statistical method for modeling the relationship between a dependent
variable and one or more independent variables.

• Classification: Techniques such as decision trees and support vector machines (SVMs) that
categorize data into predefined classes.

• Simple image/speech recognition: Algorithms that identify objects in images or convert
spoken language into text, fundamental in applications like facial recognition and virtual
assistants. An example is the Symbolics Lisp Machine shown in figure 1.3.

aMichael L. Umbricht and Carl R. Friend (Retro-Computing Society of RI), CC BY-SA 3.0
<https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons
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Figure 1.4: simple neural network vs deep learning

1.1.3 Examples of Deep Learning

Deep learning, an enhancement of machine learning, utilizes “deep” neural networks to construct
knowledge graphs, as shown in figure 1.4. Though conceptualized in the 1970s, it was initially
unfeasible due to the problem of vanishing gradients within the networks. In 2012, Geoffrey E.
Hinton’s team demonstrated that a network with 60 million parameters and 650,000 neurons could
effectively perform image classification across a dataset containing 1,000 categories (paper shown
in figure 1.5). This breakthrough was facilitated by the use of GPUs and a novel regularization
technique known as “dropout.” The team’s modified model participated in the ILSVRC-2012
competition, securing a first-place top-5 test error rate of 15.3%, a significant improvement over
the 26.2% recorded by the runner-up and a major leap when compared to the previous year as
diagrammed in figure 1.6.

6
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Review 1.1 Imagenet in 2012 represented a significant step forward in machine learning
by introducing the first practical example of deep learning, famously known as AlexNet
(Figure 1.5) This model, developed by Geoffrey Hinton and his team, utilized deep convolu-
tional neural networks to dramatically improve the accuracy of image classification, which
was a longstanding challenge in the field.

Figure 1.5: Geoffrey’s 2012 paper “ImageNet Classification with Deep Convolutional Neu-
ral Networks”.a

The results of AlexNet were rather monumental, reducing the top-5 test error rate to
15.3% compared to 26.2% by the next best entry, as shown in Figure 1.6. This was clear
evidence of deep learning’s superior capability over traditional machine learning methods,
effectively revolutionizing the approach towards machine learning in the broader scientific
community.

7
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Figure 1.6: ImageNet Competition Results showing the impact of deep learning methods on
image classification.

The implications of this leap forward led to broad applications of deep learning that
permeate numerous aspects of technology and science today. The impact of AlexNet and
subsequent deep learning developments culminated in the awarding of the 2024 Nobel Prize
in Physics to Geoffrey Hinton, recognizing his contributions to the field of artificial neural
networks. Figure 1.7 shows the 2024 Nobel Award Ceremony in Stockholm Sweden with
John Hopfield and Geoffrey Hinton receiving their awards from the King of Sweden.

Figure 1.7: The 2024 Nobel Prize in Physics for “for foundational discoveries and inven-
tions that enable machine learning with artificial neural networks” was awarded to: (a) John
Hopfield and (b) Geoffrey Hinton. a

aCopyright held by Authors and Neural Information Processing Systems Foundation, Inc., used under fair use.
<https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>

aThe author of this text was lucky enough to attend the 2024 Nobel Prize Ceremony in Stockholm and took
these pictures.
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ML for Eng. Problem Solving 1.2 Definition of Machine Learning

1.2 Definition of Machine Learning
The definitions and conventions that follow provide a common language and point of reference for
all subsequent material:

• Machine learning is the discipline of creating computer programs that improve automatically
by analyzing data. Here a broader and a more engineering-focused definition of Machine
learning is provided5:

– [Machine Learning is the] field of study that gives computers the ability to learn without
being explicitly programmed. Arthur Samuel, 1959.

– A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with
experience E. Tom Mitchell, 1997.

• The use of X and Y for variables.

– For the ith sample, x(i) contains all its input features (excluding the target), while y(i)

denotes the corresponding target value.

– General definition: “Machine learning algorithms are described as learning a target
function ( f ) that best maps input variables (X) to an output variable (Y ).”

Y = f (X) (1.1)

This is described as a standard learning challenge where the goal is to predict future values Y using
new samples of input variables X . The function f that relates inputs to outputs is not known. If
it were, direct application would be possible, eliminating the necessity for learning it via machine
learning methods. This process is more complex than it may initially seem. Furthermore, there is
an error e associated with this task that is independent of the input data X .

Y = f (X)+ e (1.2)

This yields two primary phases in the machine-learning workflow:

• Training: Creating the model is a compute-intensive process often run in a data center

• Inference: Using the model can be computationally cheap and even performed “at the edge”

9
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Figure 1.8: Supervised vs unsupervised unsupervised machine learning methodsa.

1.3 Supervision in Machine Learning
The general domains of ML can be classified into supervised and unsupervised learning, as shown
in figure 1.8.

1.3.1 Supervised Learning
In supervised learning, the data is pre-categorized with labels

• Classification, The process of categorizing a given set of data into classes

• Regression, The process of estimating the relationships between a dependent variables (i.e.
output) and one or more independent variables (i.e. input).

In supervised learning, the training data provided to the algorithm includes the desired solutions,
known as labels. A common task within this type of learning is classification. An example of
classification is a spam filter, which is trained using numerous emails that are each labeled as
either spam or ham. The objective for the spam filter is to learn how to accurately classify new
emails based on this training. Regression is another typical task is to predict a target numeric value,
such as the price of a house, given a set of features (size, proximity to railroad or highways, age
of house, style, etc.) called predictors. To train a system you need to build a model and train in on
many house sale examples, including both predictors (house features) and their labels (i.e., prices).
Some of the most important supervised learning algorithms:

• k-Nearest Neighbors

• Linear Regression

• Logistic Regression

• Support Vector Machines (SVMs)

• Decision Trees and Random Forests
amodified from: Langs, G., Röhrich, S., Hofmanninger, J. et al., CC BY 4.0
<https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons
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Figure 1.9: A semantic word cloud of Barack Obama’s First Inaugural Address a.

1.3.2 Unsupervised Learning

In unsupervised learning, the training data is unlabeled, and the system endeavors to learn inde-
pendently without explicit guidance. For instance, consider a situation where you have extensive
data on what people watch on YouTube. You might use a clustering algorithm to identify groups
of similar users. However, at no point do you instruct the algorithm on which group a user belongs
to; it discovers these connections autonomously. For example, it might identify that the types of
videos people watch are closely linked to specific age and income metrics. Older viewers may
prefer watching videos about vacations, while younger viewers might watch a lot of educational
content, such as Khan Academy.

Visualization algorithms such as that in Figure 1.9) serve as an important instance of unsuper-
vised learning algorithms: they take in extensive, complex, and unlabeled data and produce a 2D or
3D representation that can be conveniently visualized. These algorithms strive to maintain as much
of the original data structure as possible (for example, ensuring that distinct clusters in the input
space do not merge in the visual output). This helps in comprehending the organizational structure
of the data and potentially uncovering hidden patterns. Other Important concepts in unsupervised
learning include

aModified from: GuoYongzhi, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia
Commons
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• Clustering, The process of identifying and grouping similar data points in larger datasets
without concern for the specific outcome

• Association, The process learning a rule-based method for discovering relations between
variables data data

• Dimension Reduction, The process of reducing the number of input variables in training
data.

Here are some of the most important unsupervised learning algorithms:

• Clustering

• k-Means

• Hierarchical Cluster Analysis (HCA)

• Expectation Maximization

Figure 1.10: Anomaly Detection for a given set of data.

Another key application of unsupervised learning is anomaly detection as shown in figure 1.10.
The goal is to flag unusual credit-card transactions that may signal fraud, spot defects on a produc-
tion line, or filter out outliers before passing a dataset to another learning algorithm. The model is
first exposed to many examples of normal behavior so it can build a reference profile. When a new
observation arrives it checks how closely the example matches that profile and labels it normal or
anomalous accordingly.

12
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1.3.3 Semisupervised Learning

Certain algorithms are designed to manage partially labeled training data, typically characterized
by a substantial amount of unlabeled data with a minimal amount of labeled data as shown in
figure 1.11. Many semi-supervised learning algorithms are hybrid forms, integrating features of
both unsupervised and supervised learning approaches.

An example is seen in image hosting services like Google Photos. Upon uploading your family
images, the system automatically recognizes and groups repeated appearances of the same indi-
viduals across different photos, such as person 1 in photos A, C, and D and person 2 in photos
A, B, and E. This clustering is the unsupervised component of the algorithm. The system then
only needs a single label for each person to subsequently identify and tag everyone in all images,
enhancing the ease of searching through photos.

Figure 1.11: Semisupervised learning enabling the use of a limited set of labeled data to infer the
labels of larger unlabeled datasets.

1.3.4 Reinforcement Learning

Reinforcement learning follows a distinct paradigm in which an autonomous agent repeatedly
interacts with its environment. At each step the agent observes the current state, chooses and
executes an action, and then receives feedback in the form of a reward or penalty; as shown in
figure 1.12. By sampling many such cycles the agent gradually discovers a strategy, known as a
policy, that maps perceived situations to actions so as to maximise the total reward accumulated
over time.

13
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Figure 1.12: reinforcement learning control diagram

1.4 Types of learning (Batch and Online)
Machine learning systems can be broadly categorized based on how they process and learn from
data.

1.4.1 Batch Learning

In batch learning, the system is fully trained using the entirety of the available data, which often
demands significant time and computational resources, and is thus usually performed offline. Ini-
tially, the system undergoes training; after which, it is deployed into production where it no longer
learns but merely applies the previously acquired knowledge. This method is referred to as offline
learning. The deployment phase, known as inference, is typically executed swiftly.

To update a batch learning system with new information, such as recognizing a novel form of
spam, it is necessary to develop a completely new version of the system. This version must be
trained from the ground up using the entire dataset, both old and new data, before replacing the
older system in production.

Despite these challenges, the training, evaluation, and deployment processes of a machine
learning system can be automated, allowing even batch learning systems to adapt to changes. This
approach is straightforward and usually effective; however, training on a full dataset can be time-
consuming - often taking many hours - hence, systems are usually updated no more frequently than
daily or weekly. Moreover, utilizing the full dataset requires extensive computing resources, such
as CPU power, memory, disk space, and network bandwidth. For organizations with vast amounts
of data, the costs of daily retraining from scratch can be prohibitively expensive.

If the dataset is exceptionally large, employing a batch learning algorithm may become im-
practical. Additionally, in situations where autonomous learning is essential and computational
resources are limited, such as with smartphone applications or extraterrestrial rovers, the need to
manage large datasets and conduct lengthy training sessions daily poses significant challenges.

1.4.2 Online Learning

Online learning trains a model incrementally by presenting new data points one at a time or in
small mini-batches. Each update is computationally light and fast, allowing the model to refresh
its knowledge continuously as fresh data streams in. This approach is particularly appropriate for
systems that:
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• receive data continuously, such as stock prices,

• need to quickly or autonomously adapt to changes,

• have limited computing resources: once an online learning system processes new data in-
stances, they can be discarded to save space, unless there is a need to revert to a previous
state and “replay” the data.

Online learning is also useful for managing large datasets that exceed the memory capacity of a
single machine, known as out-of-core learning. The algorithm processes parts of the data, conducts
a training step, and repeats this until all the data has been processed.

A critical parameter in online learning systems is the learning rate, which dictates how rapidly
the system adapts to changing data. A high learning rate allows for rapid adaptation but may also
lead to quick forgetting of old data and training on noise. A low learning rate results in slower
learning and reduced sensitivity to variations in new data.

1.4.3 Bad Data in Machine Learning
A significant challenge in online learning is the system’s susceptibility to performance degradation
when exposed to poor quality data. This is particularly problematic in live systems where clients
might quickly notice issues. For instance, bad data could originate from a malfunctioning robot
sensor or an attempt to manipulate search engine rankings through spamming. To mitigate these
risks, it is crucial to vigilantly monitor the system and quickly disable learning or revert to a pre-
viously effective state if a decline in performance is observed. Additionally, monitoring the input
data for anomalies and employing anomaly detection algorithms can help identify and respond to
aberrant data.

Figure 1.13: Training a machine learning algorithm to recognize cows may end up just learning to
recognize grass. This is sometimes called “short-cut learning”a.

For example, imagine training a convolutional neural network to recognize cows (Figure 1.13).
Every image in the training set shows black-and-white cattle standing on lush green pasture, so the

aScreen shoot of a Google image search for cows taken by the Austin Downey, all images stated to be under a creative
commons license per Google search tools; also assumed to be fair use under given the educational purpose of this
text, via https://www.google.com/
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easiest statistical cue for the model to latch onto is the dominant green background rather than the
animals themselves. At inference time, the network confidently labels any scene filled with grass
as “cow,” yet fails when presented with a cow on snow or asphalt. In other words, it has learned
“grass recognition,” not “cow recognition”.

1.5 Learning Approaches: Instance-Based and Model-Based
Another method of classifying machine learning systems is based on their generalization capabil-
ities. Typically, the main objective in machine learning is to make predictions, which requires the
system to generalize from its training examples to new, unseen instances. Achieving high per-
formance on training data is useful but not the ultimate goal; the system must also excel when
confronted with new data. There are primarily two strategies for generalization: instance-based
learning and model-based learning.

Figure 1.14: Instance-based learning where the class of a unknown instance is inferred from the its
distance to data points with known labels.

1.5.1 Instance-based learning

One of the simplest learning strategies is rote memorization. For instance, a spam filter built on
this principle would only mark emails as spam if they match previously flagged emails exactly.
While this approach is straightforward, it’s hardly the most effective. A more sophisticated spam
filter could extend its detection capabilities to include emails that closely resemble known spam
messages. This approach necessitates a metric for measuring the similarity between two emails.
A basic method might involve counting the shared words between emails. Under this system, an
email would be classified as spam if it shares a significant number of words with an email already
identified as spam. This method exemplifies instance-based learning (Figure 1.14), where the
system memorizes specific examples and uses a similarity metric to generalize to new instances.
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1.5.2 Model-based learning
Another approach to generalization involves constructing a model based on a set of examples and
then using this model to make predictions as shown in figure 1.15. This method is known as
model-based learning.

Figure 1.15: Model-based learning where the class of a unknown instance is inferred from its
location in reference to a model trained on the data with known labels.

Figure 1.16: Flowchart of estimators used in the scikit learn library that intends guide users for
what algorithms to use for a given casea.

aScikit-learn algorithms cheat sheet, permissive simplified BSD license and assumed to be fair use under given its
nature as documentation and the educational purpose of this text, via https://scikit-learn.org/stable/
tutorial/machine_learning_map/index.html
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1.5.3 Selecting methods:

One of the initial challenges faced by newcomers to machine learning is selecting the appropriate
algorithms (or estimators) for specific tasks. This is due to the fact that various algorithms excel
with different kinds of data and problems. The flowchart depicted in Fig. 1.16, which originates
from the scikit-learn library documentation, is intended to guide users in choosing the most suitable
algorithms for their particular datasets.

1.6 The Unreasonable Effectiveness of Data
In a landmark study released in 2001, Microsoft researchers Michele Banko and Eric Brill demon-
strated that a variety of Machine Learning algorithms, even relatively straightforward ones, achieved
similar levels of performance on a complex task of natural language disambiguation when provided
with sufficient data. This finding is illustrated in figure 1.17 and further discussed in their papera.

Figure 1.17: Learning curves for four algorithms studied in Banko and Brill showing the impor-
tance of the amount of data when compared to algorithm selection.

As the authors put it: “these results suggest that we may want to reconsider the tradeoff between
spending time and money on algorithm development versus spending it on corpus development.”.
Or put more directly “The Unreasonable Effectiveness of Data”b. It’s important to recognize,
however, that small and medium-sized datasets remain prevalent, and acquiring additional training
data is not always straightforward or economical. Therefore, the significance of algorithm selection
should not be overlooked.

aMichele Banko and Eric Brill. “Scaling to very very large corpora for natural language disambiguation.” Proceedings
of the 39th annual meeting of the Association for Computational Linguistics. 2001.

bHalevy, Alon, Peter Norvig, and Fernando Pereira. “The unreasonable effectiveness of data.” IEEE intelligent sys-
tems 24.2 (2009): 8-12.
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2 Regression
Regression is a fundamental tool in machine learning used to model the relationship between an
independent variable (called data and denoted x) and a dependent variable (called target and de-
noted y). The goal is to learn a function that best predicts the target value from the input data. This
relationship is shown in figure 2.1 .

Figure 2.1: Polynomial model fit via regression to a generic dataset.

In this chapter, we first examine Linear Regression and contrast two ways to estimate its pa-
rameters:

1. Closed-form solution. Solve for the parameter vector in one step by minimizing the cost
function on the entire training set.

2. Gradient Descent . Apply an iterative optimizer that repeatedly updates the parameters in
small steps that lower the cost until it reaches the same optimum found by the closed-form
method. We will look at three common Gradient Descent variants: Batch Gradient Descent,
Mini-batch Gradient Descent, and Stochastic Gradient Descent.

The first approach gives an exact answer immediately, whereas the second reaches that answer
through successive refinements.
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Review 2.1 Ames Housing Dataset
The Ames housing dataset provides details on individual residential property sales in Ames,
Iowa, from 2006 to 2010 a. It includes 2,930 entries and numerous variables (23 nominal,
23 ordinal, 14 discrete, and 20 continuous) that are used to evaluate home values b.

Figure 2.2: Histogram of sale prices from 2006 to 2010 for the 2,930 entries.

Figure 2.3: Correlation matrix for the 13 input parameters.
aThe author of this text bought a home in Ames Iowa during this time right as the 2008 housing crash unfolded
and on the last day they allowed home loans with no down payment.

bDe Cock, Dean. “Ames, Iowa: Alternative to the Boston housing data as an end of semester regression
project.” Journal of Statistics Education 19.3 (2011).
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2.1 Linear Regression
Consider the scenario where you wish to determine the value of a house in Ames using the Ames
dataset included in sklearn. To illustrate this, let us plot the relationship between the above ground
living area and the housing price.

Figure 2.4: Ames housing data.

A clear trend is observable, despite the data’s noise (i.e., partial randomness): the value of a
house increases with the above ground living area. Therefore, the house value can be modeled as
a linear function of the above ground living area:

price_model = θ1 +θ2 × above_ground_living_area (2.1)

This model comprises two parameters, θ1 and θ2, which can be adjusted to represent any linear
relationship.

Figure 2.5: Ames housing data with trend lines.
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Notations

• x: a lowercase, bolded variable that denotes a vector.

• X: an uppercase, bolded variable that represents a matrix.

• X: this denotes the feature matrix, also known as the input matrix.

• y: this is the label vector corresponding to the feature matrix, representing the target
outputs.

• x(i) represents the ith instance in the dataset X. For instance, a dataset about cats might
include an entry for a specific cat named Mittens. This entry (labelled y) could detail
several attributes such as age, weight, and length.

• h: the hypothesis or prediction function that, given a feature vector X, outputs the pre-
dicted values ŷ = h(X).

• n: the total number of features in the dataset, which defines the complexity or degree of
the model.

• m: the total number of instances in the dataset.

• x̂: an estimated value, indicated by a hat, and pronounced as “x-hat”.

2.1.1 Closed Form Solution
Before you can tune a model’s parameters, you need a clear way to judge how well it fits the
data. The standard approach is to define a cost function that assigns a numerical penalty to poor
fits; lower values indicate better performance. For a linear model, this cost function measures
the difference between the model’s predictions and the actual training targets, and you minimize
that difference using Ordinary Least Squares linear regression. Practically, you feed your training
data into the algorithm, which then solves for the parameter values that align the linear relation-
ship most closely to the data. In Python, this procedure is implemented in scikit-learn as
sklearn.linear_model.LinearRegression.

In the context of the Ames housing data, a straightforward cost function used is the Mean
Squared Error (MSE), defined as

MSE = J =
1
m

m

∑
i=1

(ŷi − yi)
2 (2.2)

where m is the number of dataset instances, and J serves as a general representation of the cost
function in machine learning contexts.

The MSE is also applied to minimize the error in a linear regression model, with the hypothesis
hθ , trained on dataset X. This is expressed as:

MSE(X,hθ ) = J =
1
m

m

∑
i=1

(θθθ Tx(i)− y(i))2 (2.3)

where the objective is to minimize the cost function by iteratively refining the values of θθθ .
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Figure 2.6: Linear regression of a two-feature dataset obtained with least squares.

Consider a dataset containing n observations, denoted as (yi,xi)
n
i=1. Each observation i consists

of a scalar response yi and a column vector xi that holds the values for p predictors (regressors),
represented as xi j where j = 1, . . . , p. In the context of a linear regression model, the response
variable yi is modeled as a linear combination of the regressors, influenced by an error term εi:

yi = θ1xi1 +θ2xi2 + . . .+θyxim + εi (2.4)

This model can also be written in matrix notation as

y = Xθθθ + ε (2.5)

Where:

X =


x11 x12 . . . x1m
x21 x22 . . . x2m
...

... . . . ...
xn1 xn2 . . . xnm

 , θθθ =


θ1
θ2
...

θp

 , y =


y1
y2
...

yn

 (2.6)

However, the best-fit model ŷ will not be able to account for the unmodeled error, therefore:

ŷi = θ̂1xi1 + θ̂2xi2 + . . .+ θ̂mxim (2.7)

or
ŷ = Xθ̂θθ (2.8)

This goal is to find θ̂ such that the error is minimized. Mathmatically, this is simple enough as
the θ̂ Is the minimization of the lease-squares hyperplane, or:

θ̂θθ = (XTX)−1XTy (2.9)

Equation 2.9 is referred to as the normal equation. Consider a simple linear model with p = 2,
where x11 = 1. In this scenario, x11 acts as the bias term of the equation, whereas the remaining
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elements of X represent the data. Without this bias term, the solution would only address the slope
of the line. Subsequently, solving for θ̂1 and θ̂2 yields:

[x11x12][θ̂1θ̂2] = ŷ (2.10)

As x11 = 1 (again, called the bias term) this becomes:

ŷ = θ̂1 + x12θ̂2 (2.11)

This is simply another expression for the equation of a liner line:

y = mx+b (2.12)

Solving the model output for a input or a series of inputs can than be done simply enough.

Figure 2.7: Ames housing data inferred.

2.1.2 Computational Complexity

The Normal Equation calculates the inverse of XTX, an n×n matrix, where n represents the number
of features. The computational complexity of matrix inversion generally ranges from O(n2.4) to
O(n3), depending on the specific algorithm used. Consequently, doubling the number of features
would increase the computational effort by approximately 22.4 ≈ 5.3 to 23 = 8 times.

WARNING
When the number of features becomes very large, for example around 100,000, solving

the Normal Equation becomes extremely slow.

On the positive side, the computational complexity of this equation is linear with respect to the
number of instances in the training set, denoted as O(m). This allows it to efficiently handle large
training sets, as long as they fit within memory.
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Furthermore, once your Linear Regression model is trained (whether through the Normal Equa-
tion or another method), making predictions is very quick. The computational effort is linear in
relation to both the number of instances you wish to predict and the number of features. Essentially,
predicting for twice as many instances or features will approximately double the computation time.

Next, we will explore different methods for training a Linear Regression model that are more
appropriate for scenarios with a large number of features, or when the training data exceeds mem-
ory capacity.

Example 2.1 Linear Regression - Ames Housing Dataset
This example uses the Ames housing dataset to model the relationship between above-ground
living area and house price using linear regression. It compares a manual fit, a closed-form so-
lution, and gradient descent, alongside Scikit-Learn’s LinearRegression and SGDRegressor,
to illustrate how each method fits a line to the data.

Gradient Descent is a versatile optimization algorithm capable of finding optimal solutions
across a broad spectrum of problems. The core concept of Gradient Descent involves iteratively
adjusting parameters to minimize a cost function a. Consider the analogy of being lost in a dense
fog in the mountains and seeking to descend:

1. You sense the ground’s slope under your feet (the local gradient).

2. You descend in the direction of the steepest descent.

3. Reaching a point where the local gradient is zero indicates that you have found a minimum.

The Gradient Descent process starts with random initialization of the parameter θ , followed by
gradual improvements. Each incremental step aims to reduce the cost function until the algorithm
converges to a minimum.

Figure 2.8: Illustration of gradient descent.

A critical aspect of Gradient Descent is the step size, controlled by the learning rate hyperpa-
rameter. A small learning rate leads to a slow convergence, requiring many iterations. Conversely,
a high learning rate might cause the algorithm to overshoot the minimum, potentially causing di-
vergence and failing to find an optimal solution.
aRuder, Sebastian. “An overview of gradient descent optimization algorithms.” arXiv preprint arXiv:1609.04747
(2016).
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Figure 2.9: Effect of learning rate in gradient descent, showing: (a) a slow search with a low step
size, and (b) a search with a large step size that oscillates around the minimum without ever finding
the minimum.

Cost functions do not always present themselves as neat, concave shapes. They can feature
obstacles such as holes, ridges, plateaus, and various complex topographies that complicate the
convergence to the minimum. The challenges associated with Gradient Descent include:

• Starting the algorithm from a random point on the left may lead to convergence at a local
minimum rather than the more optimal global minimum.

• Initiating on the right might result in a prolonged journey across a plateau, and terminating
the process too soon could prevent reaching the global minimum.

Figure 2.10: Gradient features and descent challenges.

Fortunately, the Mean Squared Error (MSE) cost function for Linear Regression models is
convex. This characteristic ensures that for any two points on the curve, the line segment joining
them does not intersect the curve itself. Consequently:

• There are no local minima, only one global minimum exists.

• It is a continuous function, and its slope changes smoothly.

These properties significantly benefit the optimization process: Gradient Descent can reliably
approximate the global minimum given sufficient time and an appropriate learning rate.
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2.1.3 Comparison of Gradient Descent Methods

Before looking into the mathematical details, let us examine how various gradient descent meth-
ods achieve the optimal solution, as illustrated in Figure 2.11. Additionally, Table 1 provides a
comparative analysis of different gradient descent methods, highlighting their respective strengths
and weaknesses.

Figure 2.11: Comparing gradient descent methods.

Table 1: Comparison of various linear regression solutions.

algorithm
large number of

instances (m)
data must

fit in memory
large number of

features (n) hyperparams
scaling
required Scikit-Learn

normal equation fast yes slow 0 no LinearRegression
batch GD slow yes fast 2 yes n/a
stochastic GD fast no fast ≥ 2 yes SGDRegressor
mini-batch GD fast no fast ≥ 2 yes n/a

NOTE
After training, there is minimal difference between the models: these algorithms converge

on similar solutions and make predictions in a nearly identical manner.

2.1.4 Batch Gradient Descent

Batch Gradient Descent (shown in figure 2.12) processes the entire batch of training data X at every
step, which is the origin of its name, “batch.” Consider again our Mean Squared Error (MSE) cost
function:

J =
1
m

m

∑
i=1

(ŷi − yi)
2 (2.13)

For a hypothesis hθ , the MSE for the dataset X can be computed for each instance x(i) as follows:

J(X,hθ ) = J =
1
m

m

∑
i=1

(θθθ Tx(i)− y(i))2 (2.14)
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Figure 2.12: Flowchart of Batch Gradient Descent.

With this foundation, we can implement gradient descent by computing the gradient of the cost
function with respect to each parameter θ j. Specifically, this involves calculating how much the
cost function changes when θ j is altered slightly. This calculation is known as a partial derivative.
Conceptually, it is akin to determining “the slope of the mountain under my feet if I face east,” then
repeating the question facing north, and similarly for any other direction in a higher-dimensional
space. The partial derivative of the cost function with respect to parameter θ j is computed as:

∂

∂θ j
J(θ) =

2
m

m

∑
i=1

(θθθ Tx(i)− y(i))x(i)j (2.15)

Rather than computing each partial derivative individually, all partial derivatives can be calcu-
lated simultaneously using the gradient vector, ∇θ J(θθθ), which encompasses all partial derivatives
of the cost function for each model parameter:

∇θ J(θθθ) =


∂

∂θ0
J(θ)

∂

∂θ1
J(θ)
...

∂

∂θn
J(θ)

=
2
m

XT · (Xθθθ −y) (2.16)

WARNING
Be aware that this method computes using the entire training set X at every step of Gradient

Descent, which is why the approach is named Batch Gradient Descent. Although this method
can be exceedingly slow with large training sets, it performs well with numerous features,
outpacing the Normal Equation in training Linear Regression models with extensive features.
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Once you obtain the gradient vector, which indicates the direction of ascent, the next step in-
volves moving in the opposite direction, effectively going downhill. This is achieved by subtracting
∇θ J(θ) from θθθ , incorporating the learning rate η to scale the step size:

θθθ
(next step) = θθθ −η∇θ J(θθθ) (2.17)

Interestingly, this process aligns perfectly with the results from the Normal Equation. However,
variations in the learning rate η can significantly influence the outcomes. Figure 2.13 illustrates the
first 10 steps of Gradient Descent with three different learning rates, with the dashed line marking
the starting point.

Figure 2.13: The effects of different learning rates on the gradient descent algorithms, showing:
(a) too high (η = 5e−07); (b) about right (η = 5e−08), and; (c) too low (η = 5e−09).

Figure 2.13 highlights the impact of the learning rate on gradient descent. Figure 2.13(a)
With a very large step size, η = 5×10−7, each update overshoots the minimum so the algorithm
diverges rather than converging. Figure 2.13(b) Using η = 5×10−8 provides a balanced step size;
the cost decreases just right a and the algorithm reaches the optimum in only a few iterations.
Figure 2.13(c) A small step size, η = 5×10−9, keeps the algorithm moving toward the minimum
yet progress is slow, requiring many more iterations to achieve the same result.

To identify an appropriate learning rate, a grid search can be employed. It is advisable to limit
the number of iterations during grid search to avoid models that are too slow to converge.

Determining the correct number of iterations is also crucial. If set too low, the algorithm
may stop far from the optimal solution. Conversely, overly high settings lead to unnecessary
computations after convergence. A practical approach is to allow a large number of iterations but
to halt the algorithm when the gradient vector’s norm shrinks to below a small threshold ε (known
as the tolerance), indicating proximity to the minimum.

aPyle, K. “Goldilocks and the three bears.” Mother’s Nursery Tales (1918): 207-213.
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Figure 2.14: Flowchart of Stochastic Gradient Descent.

2.1.5 Stochastic Gradient Descent

Stochastic Gradient Descent (shown in figure 2.14) updates the model parameters after evaluating
each individual training sample x(i) and its corresponding label y(i), which stands in contrast to
batch gradient descent that uses the entire dataset for each update. The update rule for SGD can be
expressed as

θ
(next step) = θ −η∇θ J(θ ;x(i);y(i)). (2.18)

While batch gradient descent tends to perform unnecessary recalculations for large datasets by
reevaluating gradients for similar examples with each update, SGD eliminates this inefficiency by
updating parameters incrementally. Consequently, SGD is generally faster and adaptable for online
learning. Due to its frequent and individual updates, SGD exhibits high variance in the objective
function, causing significant fluctuations as illustrated in Fig. 2.15(b).

Figure 2.15: Comparison of the iterative performance of Batch and Stochastic Gradient Descent,
showing: (a) how they move towards their target, and (b) the error at comparable steps.
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2.1.6 Mini-batch Gradient Descent

Figure 2.16: Flowchart of Mini-batch Gradient Descent.

θ
(next step) = θ −η∇θ J(θ ;x(i:i+n);y(i:i+n)) (2.19)

The final Gradient Descent algorithm we will discuss is Mini-batch Gradient Descent. This
method combines elements of both Batch and Stochastic Gradient Descent: rather than calculating
gradients using the entire training set (as in Batch GD) or a single instance (as in Stochastic GD),
Mini-batch GD computes gradients using small, randomly selected subsets of instances known
as minibatches. One significant benefit of Mini-batch GD over Stochastic GD is the improved
performance from hardware-optimized matrix operations, particularly on GPUs.

Mini-batch GD’s trajectory through parameter space tends to be more stable compared to the
often erratic path of SGD, especially with larger minibatches. This stability typically brings Mini-
batch GD closer to the minimum than SGD. However, Mini-batch GD might struggle more with
escaping local minima in scenarios prone to such issues, which is less of a concern in Linear
Regression. Figure 2.11 illustrates the trajectories of these three Gradient Descent techniques
during training. While Batch GD precisely reaches the minimum, Stochastic GD and Mini-batch
GD tend to oscillate nearby. It is important to note, however, that while Batch GD is slow in taking
steps, both Stochastic GD and Mini-batch GD could also effectively reach the minimum with an
appropriate learning rate schedule.

2.1.7 Feature Scaling

The cost function can resemble an elongated bowl if the feature scales vary significantly. Fig-
ure 2.17 illustrates the effect of feature scaling on Gradient Descent. In figure 2.17(a), Gradient
Descent progresses directly towards the minimum, reaching it swiftly. However, in figure 2.17(b) it
initially moves almost orthogonally to the direction of the global minimum, followed by a lengthy
traverse down a nearly flat valley, significantly delaying the convergence.
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Figure 2.17: Gradient descent on a 2D surface for parameters that are: (a) equally scaled, and (b)
unequally scaled.

Training a model can be viewed as a search through the parameter space for the combination
that minimizes the cost function. When additional parameters are introduced, this space gains
extra dimensions, making the optimization task more challenging. In Ordinary Least Squares
Linear Regression, however, the cost surface is convex and bowl-shaped, so any descent method is
guaranteed to reach the global minimum. To normalize feature scales, two common methods are
employed. The are Min-max scaling and Standardization.

• Min-max scaling, often referred to as normalization, is straightforward: it rescales the data
to a range of 0 to 1 by subtracting the minimum value and dividing by the range (max minus
min).

X′ =
X−Xmin

Xmax −Xmin
(2.20)

Scikit-Learn offers sklearn.preprocessing.MinMaxScaler for this purpose.

• Standardization differs significantly as it first subtracts the mean (resulting in a zero mean)
and then divides by the standard deviation to achieve unit variance. This method does not
limit values to a specific range, which can be problematic for certain algorithms, such as
neural networks which often expect inputs between 0 and 1. However, standardization is
less sensitive to outliers. For instance, if a median income is mistakenly recorded as 100,
min-max scaling would compress all other values between 0 and 15 to between 0 and 0.15,
whereas standardization would be minimally affected.

X′ =
X−X

σ
(2.21)

sklearn.preprocessing.StandardScaler is provided by Scikit-Learn for standardiza-
tion.

WARNING
It is crucial to apply scalers exclusively to the training data and not to the entire dataset,

which includes the test set. This practice ensures that the model is not inadvertently exposed
to test data during training. Once the scalers are fitted to the training data, they can then be
used to transform the training set, the test set, and any new data subsequently encountered.
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2.2 Polynomial Regression
What if the underlying pattern of your data is more complex than a simple linear relationship? Con-
sider the dataset shown in figure 2.18 with non-linear characteristics (one feature across multiple
instances), which typically can be modeled using a second-order polynomial

ŷ = ax2 +bx+ c. (2.22)

Figure 2.18: Dataset derived from a 2nd-order polynomial.

A simple linear fit will under-perform, so you first enrich the training set by adding the squared
term of each feature as an extra column; shown in figure 2.19. Although the model you train
is still linear with respect to its parameters, it now operates on an augmented feature space and
can represent the desired quadratic curve. This approach is called Polynomial Regression, and it
extends naturally by including higher powers whenever more complex nonlinearities are present.

Figure 2.19: Linear models fit to the individual features of a polynomial dataset.
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This data can then be incorporated into two linear models, where the slopes of the feature sets
serve as the parameters for the base-line polynomial expression (a and b in Equation 2.22) and
the bias term is the offset (c in Equation 2.22). The results of such a polynomial fit is shown in
figure 2.20.

Figure 2.20: Polynomial model fit to a dataset.

It is important to note that Polynomial Regression can identify interrelationships between fea-
tures in cases where multiple features exist, a capability beyond the scope of simple Linear Re-
gression. This enhancement is enabled by PolynomialFeatures, which includes all possible
combinations of features up to the specified degree. For instance, with two features a and b, and
a degree of 3, PolynomialFeatures would add not only a2,a3,b2, and b3 but also the combined
terms ab,a2b, and ab2.

WARNING
PolynomialFeatures(degree=d) expands an array with n original features into one

that includes (n+d)!
d!n! features, accounting for all combinations of features up to the d-th degree.

Here, n! represents the factorial of n, calculated as 1×2×3×·· ·×n. Be cautious of the rapid
increase in the number of features, known as combinatorial explosion!

Example 2.2 Polynomial Regression
This example fits a non-linear dataset using polynomial regression by adding x2 as an ex-
tra feature. It demonstrates how linear models can approximate curved relationships when
polynomial terms are included, and shows the resulting fit compared to the original data.
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2.3 Training and Testing Data
Training a predictive model on a dataset and then testing it with the same data is a fundamental
error in methodology. Such a model could simply memorize the labels of the training samples,
achieving perfect performance during training but failing to make any useful predictions on new,
unseen data. This phenomenon is known as overfitting. To prevent this, it is standard practice in
supervised machine learning to reserve a portion of the available data as a test set, denoted as Xtest
and ytest.

Figure 2.21: Splitting data up into training and testing subsets.

Figure 2.22: Splitting data up into training, validation, and testing subsets.

The function sklearn.model_selection.train_test_split in scikit-learn randomly di-
vides arrays or matrices into training and testing subsets.
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2.4 Pipelines
Pipelines in scikit-learn streamline the process by sequentially applying a list of transformations
followed by a final estimator to a dataset. Employing pipelines allows for the integration of multi-
ple processing steps, which can then be cross-validated together while experimenting with various
parameters. Fig. 2.23 illustrates a typical pipeline configuration in scikit-learn.

Figure 2.23: Pipeline setup for the automated deployment of pre-processing and modeling steps.a

2.5 Learning Curves
Performing Polynomial Regression with a high degree typically allows for a closer fit to the training
data compared to simple Linear Regression. For instance, Figure 2.24 demonstrates the application
of a 30-degree polynomial model to a set of training data, contrasting it with both a linear model
and a quadratic model (2nd-degree polynomial). Observe how the 30-degree polynomial model
contorts to closely match the training instances.

• The linear model exhibits underfitting.

• The high-degree Polynomial Regression model drastically overfits the training data.

• Among these, the quadratic model is likely to generalize best.

In this instance, the appropriateness of the quadratic model is clear since the data was initially
generated using such a model. However, in real-world scenarios where the underlying function of
the data is unknown, determining the optimal complexity for your model can be challenging. How
can you ascertain whether your model is overfitting or underfitting the data?

aModified from PopovaZhuhadar, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia
Commons
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Figure 2.24: Polynomial regression showing underfitting (degree=1), a respectable model fit (de-
gree=2), and overfitting (degree=30).

Figure 2.25: Learning curves for the underfitting linear model (degree=1) where underfitting is
evident because both curves have plateaued; they are close together and relatively high.

Examining the model’s behavior in figures 2.25 and 2.26 on the training set shows a clear trend.
With only one or two samples the fit is perfect, so the error curve begins at zero. As additional
observations are introduced the model can no longer capture every point exactly, partly because of
measurement noise and partly because the underlying relationship is nonlinear, and consequently
the training error rises. After a sufficient number of samples the curve flattens out; beyond this
plateau adding further data neither markedly lowers nor raises the average error.
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Figure 2.26: Learning curves for the overfitting polynomial model (degree=20) showing a signif-
icant gap between the curves, which indicates better performance on the training data than on the
validation data.

Inspection of the validation curve in figure 2.26 tells a complementary story. With only a hand-
ful of training samples the model cannot generalize, so the validation error starts high. As more
examples become available it learns progressively better patterns and the error falls. Eventually,
though, the simple linear hypothesis is unable to capture the data’s full complexity, causing the
decline to flatten out; the validation curve plateaus at nearly the same level as the training curve.
Their close proximity and uniformly large values are characteristic of an underfitting model.

Figure 2.26 displays the learning curves for a model fitted with a 20th-degree polynomial. The
overall shape resembles the curves seen earlier, yet two key differences stand out. First, the error
on the training set is far lower than that achieved by the Linear Regression model, demonstrating
the polynomial’s extra flexibility. Second, a pronounced gap separates the training and validation
curves, which means the model performs much better on the data it has already seen; this diver-
gence is the hallmark of overfitting. Expanding the training set could reduce the gap, but without
additional regularization the risk of overfitting would remain.

Next, let’s apply the code using a 2nd order polynomial, which accurately captures the essence
of the data without underfitting or overfitting. These results are shown in Figure 2.27. Here it
can be seen that the training and validation curves again meet after converging, showing a well-fit
model.
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Figure 2.27: Learning curves for the optimal polynomial model (degree=2) showing well-aligned
curves that plateau at a relatively low error level.

Example 2.3 Learning Curves
This example compares learning curves for linear and polynomial regression models. By plot-
ting training and validation errors as the training set grows, it illustrates how model complexity
impacts bias and variance, and helps identify underfitting and overfitting behavior.

2.6 Regularized Linear Models
Overfitting is frequently curbed by regularizing the model, meaning you introduce constraints that
reduce its effective degrees of freedom and make it harder to memories noise. In a polynomial
setting you can achieve this simply by choosing a lower-degree polynomial, while in a linear
model you typically add a penalty that discourages large coefficient values. This naturally raises
the question: how is regularization expressed mathematically?

2.6.1 Ridge Regression

Ridge Regression modifies Linear Regression by adding a regularization term to the cost function,
which compels the learning algorithm to fit the data while keeping the model weights as small as
possible. The updated cost-function is

J(θ) = MSE(θ)+α
1
2

n

∑
i=1

θ
2
i . (2.23)

The hyperparameter α dictates the degree of regularization. If α = 0, Ridge Regression reduces to
plain Linear Regression. If α is very high, the model weights are significantly shrunk, resulting in
a nearly flat line through the mean of the data. Equation 2.23 outlines the cost function for Ridge
Regression. The bias term θ0 is not regularized, as indicated by the summation starting from i = 1.
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NOTE
The regularization term is only included during the training phase. After training, the

model’s performance should be evaluated based on the unregularized performance measure.

Figure 2.28: Visualization of Ridge Regression models with varying α values.

Figure 2.28 illustrates various Ridge models trained on linear data, showcasing different α

value. In Figure 2.28(a), models are purely Ridge Regression, leading to linear predictions. In Fig-
ure 2.28(b), the data undergoes Polynomial Regression with Ridge regularization. To do this, the
data is first expanded using PolynomialFeatures(degree=10), then scaled with StandardScaler,
and finally, Ridge models are applied to these transformed features.

Increasing α results in flatter (i.e., more reasonable and less extreme) predictions, thereby
reducing the model’s variance but increasing its bias. Ridge Regression can be performed using
a closed-form solution or through Gradient Descent, similar to Linear Regression. The pros and
cons for each method mirror those discussed previously. The closed-form solution, an extension
of the normal equation, is given by:

θ̂ = (XT ·X +αA)−1 ·XT · y (2.24)

where α influences the regularization and A is an n× n identity matrix with the top-left value
replaced by 0 to exclude the bias term. When using Gradient Descent, the derivative of the cost
function guides the adjustment toward optimal model parameters.

Example 2.4 Ridge Regression
This example demonstrates Ridge Regression as a regularized alternative to linear regression.
A high-degree polynomial model is fit to noisy data using a pipeline with Ridge regularization,
showing how the regularization term reduces overfitting and stabilizes the model.
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2.7 Early Stopping
An alternative approach to regularizing iterative learning methods (such as Gradient Descent) is to
halt training as soon as the validation error hits its lowest point, a strategy known as early stopping.
Figure 2.29 illustrates a complex model, specifically a high-degree Polynomial Regression model,
being refined through Batch Gradient Descent. Over the course of training, as epochs progress, the
model’s prediction error (RMSE) on both the training and validation sets decreases. However, after
some time, the validation error ceases to decline and begins to increase, signaling that the model is
beginning to overfit the training data. By implementing early stopping, training is terminated the
moment the validation error reaches its minimum. Geoffrey Hinton praised this method stating,
“Early stopping (is) beautiful free lunch” due to its simplicity a.

Figure 2.29: An example showing how early stopping can result in a better model as it does not
allow for the over-fitting of the training set.

Example 2.5 Early Stopping
This example uses a high-degree polynomial model trained with stochastic gradient descent
to demonstrate early stopping. By tracking training and validation errors across epochs, it
highlights how halting training early can prevent overfitting and improve generalization.

aPennington, Jeffrey, Richard Socher, and Christopher D. Manning. “Glove: Global vectors for word representation.”
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014.

41



1   """
2   Example 2.1 Linear Regression
3   @author: Austin Downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import numpy as np

10   import matplotlib.pyplot as plt
11   import sklearn as sk
12   from sklearn import datasets
13   from sklearn.linear_model import LinearRegression
14   
15   plt.close('all')
16   
17   #%% load data
18   
19   ames = sk.datasets.fetch_openml(name="house_prices", as_frame=True,parser='auto')
20   target = ames['target'].values
21   data = ames['data']
22   YrSold = data['YrSold'].values # Year Sold (YYYY)
23   MoSold = data['MoSold'].values # Month Sold (MM)
24   OverallCond = data['OverallCond'].values # OverallCond: Rates the overall condition of 

the house
25   GrLivArea = data['GrLivArea'].values # Above grade (ground) living area square feet
26   BedroomAbvGr = data['BedroomAbvGr'].values # Bedrooms above grade (does NOT include 

basement bedrooms)
27   
28   # Ask a home buyer to describe their dream house, and they probably won't begin 
29   # with the height of the basement ceiling or the proximity to an east-west railroad. 
30   # But this playground competition's dataset proves that much more influences price 
31   # negotiations than the number of bedrooms or a white-picket fence.
32   
33   # With 79 explanatory variables describing (almost) every aspect of residential 
34   # homes in Ames, Iowa, this competition challenges you to predict the final price 
35   # of each home.
36   
37   # Plot a few of the interesting features vs the target (price). In particular, 
38   # let's plot the number of rooms vs. the price. 
39   plt.figure()
40   plt.plot(GrLivArea,target,'o',markersize=2)
41   plt.xlabel('Above grade (ground) living area square feet')
42   plt.ylabel('price (USD)')
43   plt.grid(True)
44   plt.tight_layout()
45   
46   #%% Build a model for the data
47   X = GrLivArea
48   Y = target
49   model_X = np.linspace(0,5000)
50   
51   theta_1 = 0
52   theta_2 = 100
53   model_Y_manual = theta_1 + theta_2*model_X
54   
55   plt.figure()
56   plt.plot(X,Y,'o',markersize=2,label='data')
57   plt.plot(model_X,model_Y_manual,'--',label='manual fit')
58   plt.xlabel('Above grade (ground) living area square feet')
59   plt.ylabel('price (USD)')
60   plt.grid(True)
61   #plt.xlim([3.5,9])
62   #plt.ylim([0,50000])
63   plt.legend(framealpha=1)
64   plt.tight_layout()
65   
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66   # add a dimension to the data as math is easier in 2d arrays and sk learn only 
67   # takes 2d arrays
68   X = np.expand_dims(X,axis=1)
69   Y = np.expand_dims(Y,axis=1)
70   model_X = np.expand_dims(model_X,axis=1)
71   
72   #%% compute the linear regression solution using the closed form solution
73   
74   # compute 
75   X_b = np.ones((X.shape[0],2))
76   X_b[:,1] = X.T # add x0 = 1 to each instance
77   
78   theta_closed_form = np.linalg.inv(X_b.T@X_b)@X_b.T@Y
79   
80   model_y_closed_form = theta_closed_form[0] + theta_closed_form[1]*3000
81   model_Y_closed_form = theta_closed_form[0] + theta_closed_form[1]*model_X
82   
83   plt.figure()
84   plt.plot(X,Y,'o',markersize=3,label='data points')
85   plt.xlabel('Above grade (ground) living area square feet')
86   plt.ylabel('price (USD)')
87   plt.plot(3000,model_y_closed_form,'dr',markersize=10,zorder=10,
88   label='inferred data point')
89   plt.plot(model_X,model_Y_closed_form,'-',label='normal equation')
90   plt.grid(True)
91   plt.legend()
92   plt.tight_layout()
93   
94   #%% compute the linear regression solution using gradient descent
95   
96   eta = 0.00000001 # learning rate
97   n_iterations = 100
98   m = X.shape[0]
99   theta_gradient_descent = np.random.randn(2,1) # random initialization

100   for iteration in range(n_iterations):
101   gradients = 2/m * X_b.T.dot(X_b.dot(theta_gradient_descent) - Y)
102   theta_gradient_descent = theta_gradient_descent - eta * gradients
103   
104   print(theta_gradient_descent)
105   
106   model_Y_gradient_descent = theta_gradient_descent[0] \
107   + theta_gradient_descent[1]*model_X
108   
109   plt.figure()
110   plt.plot(X,Y,'o',markersize=3,label='data points')
111   plt.xlabel('Above grade (ground) living area square feet')
112   plt.ylabel('price (USD)')
113   plt.plot(model_X,model_Y_closed_form,'-',label='normal equation')
114   plt.plot(model_X,model_Y_gradient_descent,':',label='gradient descent')
115   plt.grid(True)
116   plt.legend()
117   plt.tight_layout()
118   
119   #%% compute the linear regression solution using sk-learn
120   
121   # build and train a closed from linear regression model in sk-learn
122   model_LR = sk.linear_model.LinearRegression()
123   model_LR.fit(X,Y[:,0])
124   model_Y_sk_LR = model_LR.predict(model_X)
125   
126   # build and train a Stochastic Gradient Descent linear regression model in sk-learn.
127   # Note that in running the model, the best way to do this would be to use a pipeline
128   # =with feature scaling. However, here we just set 'eta0' to a low value, this 
129   # is done only for educational # purposes and is not the ideal methodology in 
130   # terms of system robustness. 
131   model_SGD = sk.linear_model.SGDRegressor(learning_rate='constant',eta0=0.00000001)
132   model_SGD.fit(X,Y[:,0])
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133   model_Y_sk_SGD = model_SGD.predict(model_X)
134   
135   # plot the modeled results
136   plt.figure()
137   plt.plot(X,Y,'o',markersize=2,label='data')
138   plt.plot(model_X,model_Y_closed_form,'-',label='normal equation')
139   plt.plot(model_X,model_Y_gradient_descent,'--',label='gradient descent')
140   plt.plot(model_X,model_Y_sk_LR,':',label='sklearn normal equation')
141   plt.plot(model_X,model_Y_sk_SGD,'-.',label='sklearn stochastic gradient descent')
142   
143   plt.xlabel('Above grade (ground) living area square feet')
144   plt.ylabel('price (USD)')
145   plt.grid(True)
146   plt.legend(framealpha=1)
147   plt.tight_layout()
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 2.2
5   Polynomial regression 
6   Machine Learning for Engineering Problem Solving
7   @author: Austin Downey
8   """
9   

10   import IPython as IP
11   IP.get_ipython().run_line_magic('reset', '-sf')
12   
13   import numpy as np
14   import scipy as sp
15   import matplotlib as mpl
16   import matplotlib.pyplot as plt
17   import sklearn as sk
18   from sklearn import linear_model
19   
20   plt.close('all')
21   
22   #%% build the data sets
23   np.random.seed(2) # 2 and 6 are pretty good
24   m = 100
25   X = 6 * np.random.rand(m,1) - 3
26   Y = 0.5 * X**2 + X + 2 + np.random.randn(m,1)
27   
28   # plot the data
29   plt.figure()
30   plt.grid(True)
31   plt.scatter(X,Y)
32   plt.xlabel('x')
33   plt.ylabel('y')
34   
35   #%% perform  polynomial regression
36   
37   # generate x^2 as we use the model y = a*x^2* + b*x + c 
38   X_poly_manual = np.hstack((X,X**2))
39   
40   # or use the code as this does lots of features for multi-feature data sets. 
41   poly_features = sk.preprocessing.PolynomialFeatures(degree=2, include_bias=False)
42   X_poly_sk = poly_features.fit_transform(X)
43   
44   # they do do same thing as shown below, so select one to carry forward. 
45   print(X_poly_manual == X_poly_sk)
46   X_poly = X_poly_manual
47   
48   # In essence, we now have two data sets. We can plot that here
49   plt.figure()
50   plt.grid(True)
51   plt.scatter(X_poly[:,0],Y,label = 'data for x')
52   plt.scatter(X_poly[:,1],Y,marker='s',label = 'data for $x^2$')
53   plt.legend()
54   plt.xlabel('x')
55   plt.ylabel('y')
56   
57   # and fit linear models to these data sets
58   model = sk.linear_model.LinearRegression() # Select a linear model
59   model.fit(X_poly,Y) # Train the model
60   X_model_1 = np.linspace(-3,3)
61   X_model_2 = np.linspace(0,9)
62   
63   # the model parameters are:
64   model_coefficients = model.coef_
65   model_intercept = model.intercept_
66   print(model_coefficients)
67   print(model_intercept)
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68   
69   Y_X1 = model_coefficients[0][0]*X_model_1 + model_intercept
70   Y_X2 = model_coefficients[0][1]*X_model_2 + model_intercept
71   
72   # now if we plot the linear models on the extended set of features. 
73   plt.figure()
74   plt.grid(True)
75   plt.scatter(X_poly[:,0],Y,label = 'data for x')
76   plt.scatter(X_poly[:,1],Y,marker='s',label = 'data for $x^2$')
77   plt.plot(X_model_1,Y_X1,'--',label='inear fit $x$')
78   plt.plot(X_model_2,Y_X2,':',label='linear fit for $x^2$',)
79   plt.legend()
80   plt.xlabel('x')
81   plt.ylabel('y')
82   plt.savefig('example_6_fig_1',dpi=300)
83   
84   # now that we have a parameter for x and x^2, these can be recombined into a single
85   # model, y = x^2*a + x*b + c.
86   Y_polynominal = model_coefficients[0][1]*X_model_1**2 + model_coefficients[0][0]*\
87   X_model_1 + model_intercept
88   
89   plt.figure()
90   plt.grid(True)
91   plt.scatter(X,Y,label='data')
92   plt.plot(X_model_1,Y_polynominal,'r--',label='polynominal fit')
93   plt.xlabel('x')
94   plt.ylabel('y')
95   plt.legend()
96   plt.savefig('example_6_fig_2',dpi=300)
97   
98   
99   

100   
101   
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 2.3
5   Learning curves
6   Machine Learning for Engineering Problem Solving
7   @author: Austin Downey
8   """
9   

10   import IPython as IP
11   IP.get_ipython().run_line_magic('reset', '-sf')
12   
13   import numpy as np
14   import matplotlib.pyplot as plt
15   import sklearn as sk
16   from sklearn import linear_model
17   from sklearn import pipeline
18   
19   plt.close('all')
20   
21   #%% build the data sets
22   np.random.seed(2) # 2 and 6 are pretty good
23   m = 100
24   X = 6 * np.random.rand(m,1) - 3
25   Y = 0.5 * X**2 + X + 2 + np.random.randn(m,1)
26   X_model = np.linspace(-3,3)
27   
28   # plot the data
29   plt.figure()
30   plt.grid(True)
31   plt.scatter(X,Y)
32   plt.xlabel('x')
33   plt.ylabel('y')
34   
35   #%% generate learing curves for a linear model
36   
37   # build the linear model in SK learn
38   model = sk.linear_model.LinearRegression()
39   
40   # split the data into training and validation data sets
41   # Split arrays or matrices into random train and test subsets
42   X_train, X_val, y_train, y_val = sk.model_selection.train_test_split(X, Y, test_size=0.2)
43   
44   train_errors, val_errors = [], []
45   for i in range(1, len(X_train)):
46   model.fit(X_train[:i], y_train[:i])
47   y_train_predict = model.predict(X_train[:i])
48   y_val_predict = model.predict(X_val)
49   
50   # compute the error for the trained model
51   mse_train = sk.metrics.mean_squared_error(y_train[:i],y_train_predict)
52   train_errors.append(mse_train)
53   
54   # compute the error for the validation model
55   mse_val = sk.metrics.mean_squared_error(y_val,y_val_predict)
56   val_errors.append(mse_val)
57   
58   # predict model         
59   y_model = model.predict(np.expand_dims(X_model,axis=1))
60   
61   plt.figure('test model')
62   plt.scatter(X,Y,s=2, label='data')
63   plt.scatter(X_train[:i],y_train[:i], label='data in training set')
64   plt.scatter(X_val,y_val, marker='s', label='validation data')
65   plt.plot(X_model,y_model,'r--',label='model')
66   plt.xlabel('x')
67   plt.ylabel('y')
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68   plt.legend(loc=2)
69   plt.grid(True)
70   plt.savefig('test_plots/linear_model_'+str(i))
71   plt.close('test model')
72   
73   plt.figure()
74   plt.grid(True)
75   plt.plot(train_errors, "--",label="train")
76   plt.plot(val_errors, ":", label="val")
77   plt.xlabel('number of data points in training set')
78   plt.ylabel('mean squared error')
79   plt.legend(framealpha=1)
80   plt.ylim(0,6)
81   #%% generate learning curves for a polynomial model
82   
83   model = sk.pipeline.Pipeline((
84   ("poly_features", sk.preprocessing.PolynomialFeatures(degree=20, include_bias=False)),
85   ("lin_reg", sk.linear_model.LinearRegression()),
86   ))
87   
88   # split the data into training and validation data sets
89   # Split arrays or matrices into random train and test subsets
90   X_train, X_val, y_train, y_val = sk.model_selection.train_test_split(X, Y, test_size=0.2)
91   
92   train_errors = []
93   val_errors = []
94   for i in range(1, len(X_train)):
95   model.fit(X_train[:i], y_train[:i])
96   y_train_predict = model.predict(X_train[:i])
97   y_val_predict = model.predict(X_val)
98   
99   # compute the error for the trained model

100   mse_train = sk.metrics.mean_squared_error(y_train[:i],y_train_predict)
101   train_errors.append(mse_train)
102   
103   # compute the error for the validation model
104   mse_val = sk.metrics.mean_squared_error(y_val,y_val_predict)
105   val_errors.append(mse_val)
106   
107   plt.figure('test model')
108   plt.scatter(X,Y,s=2, label='data')
109   plt.scatter(X_train[:i],y_train[:i], label='data in training set')
110   plt.scatter(X_val,y_val, marker='s', label='validation data')
111   y_model = model.predict(np.expand_dims(X_model,axis=1))
112   plt.plot(X_model,y_model,'r--',label='model')
113   plt.xlabel('x')
114   plt.ylabel('y')
115   plt.legend(loc=2)
116   plt.grid(True)
117   plt.savefig('test_plots/polynominal_model_'+str(i))
118   plt.close('test model')
119   
120   plt.figure()
121   plt.grid(True)
122   plt.plot(train_errors, "--",label="train")
123   plt.plot(val_errors, ":", label="val")
124   plt.xlabel('number of data points in training set')
125   plt.ylabel('mean squared error')
126   plt.legend(framealpha=1)
127   plt.ylim(0,6)
128   
129   
130   
131   
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 2.4
5   Ridge Regression
6   Machine Learning for Engineering Problem Solving
7   @author: Austin Downey
8   """
9   

10   import IPython as IP
11   IP.get_ipython().run_line_magic('reset', '-sf')
12   
13   import numpy as np
14   import matplotlib.pyplot as plt
15   import sklearn as sk
16   from sklearn import linear_model
17   from sklearn import pipeline
18   
19   plt.close('all')
20   
21   #%% build the data sets
22   m = 20
23   X = 6 * np.random.rand(m, 1) - 3
24   Y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
25   
26   X_model = np.linspace(-3,3,num=1000)
27   X_model = np.expand_dims(X_model,axis=1)
28   
29   
30   #%% Perform Ridge Regression 
31   
32   # plot the data
33   plt.figure()
34   plt.grid(True)
35   plt.scatter(X,Y,color='gray')
36   plt.xlabel('x')
37   plt.ylabel('y')
38   
39   # build and plot a linear model 
40   model_linear = sk.linear_model.Ridge(alpha=100, solver="cholesky")
41   model_linear.fit(X, Y)
42   y_model_linear = model_linear.predict(X_model)
43   plt.plot(X_model,y_model_linear,'-',label='linear model')
44   
45   # build and plot a polynomial model 
46   model_poly = sk.pipeline.make_pipeline(sk.preprocessing.PolynomialFeatures(10),
47   sk.linear_model.Ridge(alpha=100, solver="cholesky"))
48   model_poly.fit(X, Y)
49   y_model_poly = model_poly.predict(X_model)
50   plt.plot(X_model,y_model_poly,'-',label='polynomial model')
51   
52   plt.legend()
53   
54   
55   
56   
57   
58   
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 2.5
5   Early Stopping
6   Machine Learning for Engineering Problem Solving
7   @author: Austin Downey
8   """
9   

10   import IPython as IP
11   IP.get_ipython().run_line_magic('reset', '-sf')
12   
13   import numpy as np
14   import matplotlib.pyplot as plt
15   import sklearn as sk
16   
17   
18   plt.close('all')
19   
20   #%% build the data sets
21   
22   # use 6 to help give a smooth curve that makes the case for early stopping
23   np.random.seed(6)
24   
25   m = 20
26   X = 6 * np.random.rand(m, 1) - 3
27   Y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
28   
29   # plot the data
30   plt.figure()
31   plt.grid(True)
32   plt.scatter(X,Y,color='gray')
33   plt.xlabel('x')
34   plt.ylabel('y')
35   
36   X_model = np.linspace(-3,3,num=1000)
37   X_model = np.expand_dims(X_model,axis=1)
38   
39   X_train, X_val, y_train, y_val = sk.model_selection.train_test_split(X, Y, test_size=0.2)
40   
41   #%% perform early stopping
42   
43   
44   # prepare the data
45   poly_scaler = sk.pipeline.Pipeline([("poly_features", sk.preprocessing.PolynomialFeatures

(
46   degree=90, include_bias=False)), ("std_scaler", sk.preprocessing.StandardScaler())])
47   X_train_poly_scaled = poly_scaler.fit_transform(X_train)
48   X_val_poly_scaled = poly_scaler.fit_transform(X_val)
49   
50   # set up the model, not that by setting max_iter=1 it will only train one epoch
51   model = sk.linear_model.SGDRegressor(max_iter=1, tol=0,learning_rate="constant"
52   ,eta0=0.0005,penalty=None,warm_start=True)
53   
54   
55   # Train the model in a loop to build the data set to investigate the benefit of early 

stopping
56   val_errors = []
57   train_errors = []
58   for epoch in range(1000):
59   model.fit(X_train_poly_scaled, y_train.ravel()) # continues where it left off
60   y_val_predict = model.predict(X_val_poly_scaled) # Predict the target values
61   y_train_predict = model.predict(X_train_poly_scaled) # Predict the target values
62   val_error = sk.metrics.mean_squared_error(y_val, y_val_predict) # Calculate error
63   train_error = sk.metrics.mean_squared_error(y_train.ravel(), y_train_predict) # 

Calculate error
64   val_errors.append(val_error)
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65   train_errors.append(train_error)
66   
67   # plot the early learning curves, you may have to plot this a few times to get 
68   # a set of curves that shows strong results
69   plt.figure()
70   plt.grid(True)
71   plt.plot(val_errors,label='validation data')
72   plt.plot(train_errors,'--',label='training data')
73   plt.ylabel('RMSE')
74   plt.xlabel('epoch')
75   plt.legend()
76   
77   
78   
79   
80   
81   

ML for Eng. Problem Solving 2.8 Examples

51



ML for Eng. Problem Solving

3 Classification
In Chapter 1, we examined various tasks that machine learning excels at, such as regression (pre-
dicting values) and classification (identifying classes). Having explored linear and polynomial
regression in Chapter 2, we now turn our attention to classification in this section.

3.1 Binary Classifier
A binary classifier is a model that assigns inputs to one of two distinct classes. Linear binary classi-
fication is a simple but powerful method used to separate data into two distinct classes by drawing a
straight decision boundary—such as a line (in 2D) or hyperplane (in higher dimensions)—between
them. It works by computing a weighted sum of the input features and applying a threshold to de-
termine the output class. Mathematically, it learns a weight vector θ and bias term b such that the
decision rule can be written as:

ŷ =

{
1 if θ

Tx+b ≥ 0
0 otherwise

(3.3)

where x is the input feature vector. During training, the weights are adjusted to minimize classi-
fication error, often using gradient descent on a suitable loss functions (e.g., hinge loss or logistic
loss).

Despite its simplicity, the linear classifier is often surprisingly effective, especially when the
data is linearly separable or nearly so. An example of such a case is shown in figure 3.1 where
the three models (H1, H2, and H3) are linear models defined by the hyperparameters θ that each
correctly classify the data. The challenge then becomes how does one obtain the hyperparameters
θ . To start, we will show that the hyperparameters θ can be obtained through gradient descent.

Figure 3.1: Linear classifier that can be implemented with gradient descent.
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Review 3.1 MNIST (Modified National Institute of Standards and Technology) Dataset
The MNIST (Modified National Institute of Standards and Technology) dataset is a collec-
tion of 70,000 small images of handwritten digits (figure 3.2). This dataset is known as
“modified” because it combines two earlier sets of images: one created by U.S. high school
students and another by US Census Bureau employees. First published in 1998, the dataset
is particularly suitable for machine learning tasks as each image is labeled with the digit it
represents. Each digit has been normalized and centered in a 28x28 pixel frame and anti-
aliased to introduce grayscale levels. Each instance (i.e. picture) has 784 features that range
from 0 to 256 and each represent an 8-bit gray scale pixel as shown in figure 3.3.

Typically, the dataset is split into two parts: the first 60,000 images are used for training,
and the remaining 10,000 serve as validation data. It is standard practice to train and test
models on the first 60,000 images, reserving the last 10,000 for final validation at the end
of the project when the classifier is ready for deployment. Scikit-Learn includes a helper
function that facilitates the downloading of the MNIST dataset.

Figure 3.2: A collection of the 10 digits (0-9) that make up the MNIST data set.
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Figure 3.3: The 784 features that range from 0 to 256 and each represent an 8-bit gray scale
pixel for a “5 digit” from the MNIST data set.

To begin, we simplify our task by focusing on identifying all the “5”s in the MNIST dataset.
This task involves using a binary classifier that checks whether each digit is a 5. The number 5 is
notoriously difficult to classify correctly within the MNIST dataset, making it a sensible starting
point for binary classification.

Example 3.1 MNIST Dataset
This example demonstrates how to use sklearn.datasets.fetch_openml to load the MNIST
dataset. It also includes visualization steps to display sample handwritten digits.

3.1.1 Regularized Linear Classifier

A practical algorithm for building this “5-detector” is the Regularized Linear Classifier solved
with Stochastic Gradient Descent (SGD). The Regularized Linear Classifier offers an efficient and
straightforward approach for discriminative learning of linear classifiers under convex loss func-
tions, scaling well with large datasets and maintaining simplicity in implementation as it processes
one training example at a time. The main advantages of the Regularized Linear Classifier include:

• Efficiency.

• Ease of implementation, providing many opportunities for optimization.

However, the Stochastic Gradient Descent classifier also presents certain disadvantages:

• It requires careful tuning of several hyperparameters, including the regularization parameter
and the number of iterations.

• It is sensitive to feature scaling.
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NOTE
The Regularized Linear Classifier solved with Stochastic Gradient Descent is commonly

referred to simply called a Stochastic Gradient Descent classifier, despite Stochastic Gradient
Descent only being the method used to trail the linear model. This is exemplified by the fact
that scikit-learn uses the name SGDClassifier for their model that implements a “Regular-
ized linear models with stochastic gradient descent (SGD) learning”.

Given a labeled training set (x(i),y(i))m
i=1 with y(i) ∈ 1,0 (1 marks the digit “5”), the regularised

linear “5-detector” learns a weight vector θ (bias in the first entry θ 1) by minimising

J(θ) =
1
m

m

∑
i=1

max
(
0,1− y(i)θ Tx(i)

)
+

λ

2

∥∥θ 1:
∥∥2

2, (3.4)

where the first term is the hinge loss enforcing a unit margin around the decision boundary. The
second term applies ℓ2-regularisation of strength λ > 0 to all weights except the bias (θ 1). Min-
imising (3.4) with stochastic-gradient descent yields a sparse, margin-maximising classifier that
generalises well to unseen handwritten digits.

Example 3.2 Regularized Linear Classifier
This example trains a regularized linear classifier using SGDClassifier to distinguish the
digit “5” from other digits in the MNIST dataset. It highlights how regularization helps im-
prove generalization performance by penalizing large weights, and demonstrates basic predic-
tion on a selected digit using a learned linear decision boundary.

3.2 Performance Measures for Binary Classification
Assessing the performance of a classifier can be more intricate than evaluating a regressor. Nonethe-
less, there are numerous performance metrics available that facilitate the comprehensive evaluation
of a classifier’s effectiveness.

3.2.1 Confusion Matrix

First, a brief explanation of Type I and Type II errors. These terms are not exclusive to classification
problems in machine learning; they are also crucial in statistical hypothesis testing:

Type I Error: False positive (incorrectly rejecting a true null hypothesis)

Type II Error: False negative (incorrectly failing to reject a false null hypothesis)

These four cases from statistical testing can be combined into a single matrix known as the
confusion matrix. In the context of our 5-detector, consider the simplified confusion matrix shown
in figure 3.4.
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Figure 3.4: Confusion matrix binary.

A effective approach to evaluating classifier performance is to examine the confusion matrix.
The essence is to tally the instances where class A is incorrectly classified as class B. A well-
performing classifier will exhibit high values along the diagonal and lower values elsewhere in the
matrix. Each row represents the actual class, while each column represents the predicted class.
For instance, to determine how often the classifier misidentified images of 5s as 3s, inspect the
intersection of the 5th row and 3rd column in figure 3.5.

Figure 3.5: Confusion matrix for the first 1,000 data points from the MNIST dataset.
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Figure 3.6: Confusion matrix breakout.

Each row in the confusion matrix corresponds to an actual class, while each column corre-
sponds to a predicted class This is diagrammed in figure 3.6. The first row represents non-5 images
(the negative class), and the second row represents images classified as 5s (the positive class). The
first column of the first row indicates true negatives (TN), while the second column of the first row
shows false positives (FP). The second row denotes images of 5s (the positive class): the first col-
umn represents false negatives (FN), and the second column displays true positives (TP). A perfect
classifier would only have nonzero values along the main diagonal (from top left to bottom right).

Example 3.3 Binary Confusion Matrix
This example evaluates a binary classifier trained to detect the digit “5” using a confusion
matrix. The matrix summarizes the number of true positives, true negatives, false positives,
and false negatives. It also visualizes specific misclassifications to help interpret where the
model fails, such as incorrectly labeling a “5” as not a “5” (false negative) or misidentifying
another digit as a “5” (false positive).

3.2.2 Accuracy, Precision, and Recall

The confusion matrix provides detailed information, but sometimes a more concise metric is pre-
ferred. Before looking into accuracy, let’s define it as

Accuracy =
Number of Correct Predictions

Total number of Predictions
(3.5)

or
Accuracy =

T P+T N
T P+T N +FP+FN

. (3.6)

While accuracy offers valuable insights, it’s essential to consider the number of falsely classified
positive and negative predictions, especially within the context of the problem being addressed. For
instance, a 99% accuracy rate might seem satisfactory for predicting credit card fraud. However,
what if a false negative indicates a severe virus or cancer? This is why we need to look deeper into
the accuracy formula.
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Figure 3.7: Visual representation of relevant instances, showing their relation to True Positives
(TP) and False Positives (FP).

This is where precision and recall come into play. For this, we will need a definitions of
instances

Selected instances = T P+FP (3.7)

and
Relevant instances = T P+FN (3.8)

which are visualized in figure 3.7. With these definitions in mind in mind, let’s define precision as

Precision =
selected relevant instances

selected instances
, (3.9)

or,

Precision =
T P

T P+FP
. (3.10)

One way to achieve perfect precision is to make only one positive prediction and ensure it’s correct
(precision = 1/1 = 100%). However, this approach would be impractical as it would ignore most
positive instances. Recall complements precision by considering all relevant results, both true
positives and false negatives. Recall, also known as sensitivity or true positive rate (TPR), is the
ratio of positive instances correctly detected by the classifier. We can define recall as

Recall =
selected relevant instances

relevant instances
, (3.11)

or,

Recall =
T P

T P+FN
. (3.12)

While the definition of accuracy, precision, and recall may not be immediately intuitive, a
visualizations such as that shown in figure 3.7 can help clarify them.
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To balance precision and recall, we often use the F1 score, which is the harmonic mean of
precision and recall. The F1 score favors classifiers with similar precision and recall, computed as

F1 = 2× precision× recall
precision+ recall

=
T P

T P+ FN+FP
2

. (3.13)

However, optimizing both precision and recall simultaneously is challenging due to the preci-
sion/recall tradeoff.

Figure 3.8 illustrates the tradeoffs when adjusting the decision threshold in a Regularized Lin-
ear Classifier. By adjusting the classification threshold, we can control the balance between preci-
sion and recall. Lowering the threshold increases recall but reduces precision, and vice versa.

Figure 3.8: Visualization changing thresholds on the classification of digits in a “5-detector” and
the resulting change in precision and recall.

To determine the optimal threshold, it’s helpful to plot precision and recall against the threshold
values. By default, the classifier in scikit-learn uses a threshold of zero, but this can be adjusted
as needed. As illustrated in Figure 3.9, it’s relatively straightforward to develop a classifier with
nearly any desired precision: simply adjust the threshold to a sufficiently high value. However, it’s
important to bear in mind that a high-precision classifier may not be very practical if its recall is
too low.

Figure 3.9: Visualization of the precision, recall, and F1 score as a function of changing a threshold
value.
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Figure 3.10 reports a precision vs recall curve that is obtained by changing the threshold of the
trained model. At the leftmost part of the precision-recall curve (low recall), precision is highest
because the model makes very few positive predictions, and those are likely true positives. As
recall increases, the model starts predicting more positives, including more false positives, which
reduces precision. The shape of the curve is also important; a steep drop-off indicates that the
addition of false positives happens rapidly with increasing recall, whereas a more gradual decline
suggests a better balance between precision and recall.

Figure 3.10: The relationship between precision vs recall for a changing threshold value.

By analyzing the curve, one can choose a threshold that balances precision and recall according
to the specific needs of the application. For instance, in medical diagnosis, high recall is crucial to
ensure no cases are missed, even if precision is lower. Additionally, the area under the precision-
recall curve (AUC-PR) can be used to compare models. A higher area indicates a model with better
performance across all thresholds.

Example 3.4 Accuracy, Precision, and Recall
This example computes and compares three key classification metrics (accuracy, precision,
and recall) for a linear classifier trained to detect the digit “5” in the MNIST dataset. It shows
both manual and sklearn-based calculations, introduces the F1 score, and visualizes how
precision and recall vary with the classification threshold using a precision-recall curve.
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3.3 k-fold Cross-validation
As you’ve likely observed, training your SGD classifier doesn’t always yield consistent results in
terms of model performance; hence the “stochastic” in stochastic gradient descent. One approach
to obtaining a solution closer to the global minimum is to allow the gradient descent algorithm to
iterate over more epochs. However, this poses a challenge as it’s highly time-consuming and may
lead to overfitting the model. Moreover, the variability in model performance makes it difficult to
gauge the model’s effectiveness.

Figure 3.11: Performance metrics for 500 5-detectors trained either with full data or through k-fold
cross-validation with 3 folds.

k-fold cross-validation offers a more rigorous method for evaluating your algorithm’s perfor-
mance. For instance, consider Figure 3.11, which depicts the performance metrics for 500 classifi-
cation models trained as 5-detectors. Noticeably, the results obtained using k-fold cross-validation
exhibit significantly less variability compared to training the classifier on the full dataset. In k-fold
cross-validation, the training set is divided into smaller subsets for training and validation. The
model is trained on these subsets and evaluated on the validation sets. Figure 3.12 provides a
graphical representation of this technique.
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Figure 3.12: Illustration of how k-fold cross-validation operates.

Of course, Scikit-Learn provides a cross-validation feature, known as sk.model_selection.
cross_val_score. This function conducts k-fold cross-validation by randomly partitioning the
training set into distinct folds. Each fold is used for validation while the rest are used for training
the SGD classifier. The reported performance metrics are averaged across all folds. It’s important
to note that by partitioning the data into folds, the number of samples available for learning is
limited, which may result in peculiar classifiers with unusually high or low error rates. Despite
being more computationally expensive, this approach effectively utilizes all the data for training
and validation.

Example 3.5 k-fold Cross-Validation
This example trains a binary classifier to detect the digit “5” from the MNIST dataset using
Stochastic Gradient Descent (SGD). It first demonstrates how model performance can vary
when trained multiple times on the same dataset. Then, by applying k-fold cross-validation
using sk.model_selection.cross_val_predict, it shows how splitting the data into k
subsets helps reduce this variation and provides a more reliable estimate of accuracy, preci-
sion, and recall.

3.4 Multiclass Classification
Previously, we explored binary classifiers, which distinguish between two classes. Now, we’ll ex-
plore the use of multiclass classifiers (also known as multinomial classifiers), which can discern
between more than two classes. The simplest approach to multiclass classification involves mul-
tiple iterations of a binary classifier. There are two primary strategies for achieving this, both of
which are considered in the context of the MNIST database challenge:
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Figure 3.13: One-versus-Rest (OvR) classifier for a multi-class dataset.

• One-versus-Rest (OvR): This strategy involves creating a system capable of classifying
digit images into 10 classes (from 0 to 9) by training 10 binary classifiers, one for each digit
(e.g., a 0-detector, a 1-detector, etc.). When classifying an image, the decision score from
each classifier is obtained, and the class with the highest score is selected. While sometimes
referred to as One-Versus-All (OvA), this term is slightly misleading as it does not involve
comparisons against the same class.

Figure 3.14: One-versus-one (OvO) classifier for a multi-class dataset.

• One-versus-one (OvO): This approach trains a binary classifier for every pair of digits,
such as one for distinguishing between 0s and 1s, another for distinguishing between 0s and
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5s, and so forth. If there are N classes, N × (N − 1)/2 classifiers need to be trained. For
the MNIST problem, this translates to training 45 binary classifiers. During classification,
the image is evaluated against all 45 classifiers, and the class with the most victories is
selected. The primary advantage of OvO is that each classifier only needs to be trained on
the relevant portion of the training set for the two classes it distinguishes, which is beneficial
for algorithms that scale poorly.

Certain algorithms, such as Support Vector Machine classifiers, suffer from scalability issues
with larger training sets. Algorithms that do not scale well with large datasets often resort to the
OvO approach because training many small classifiers is computationally cheaper than fitting a
handful of models on the full data. For most binary classifiers the OvR strategy is the norm. Some
methods (including Random Forests and naïve Bayes) support multiclass problems natively and
therefore require neither reduction strategy.

Example 3.6 Multiclass Regularized Linear Classifier
This example extends the use of SGDClassifier to multiclass classification on the MNIST
dataset. It compares three approaches: One-vs-Rest (OvR), One-vs-One (OvO), and Scikit-
Learn’s default automatic strategy. Each method trains multiple binary classifiers to distin-
guish between the 10 digit classes.

3.5 Performance Measures for Multiclass Classification
Assessing a multiclass classifier often poses more challenges compared to evaluating a binary
classifier. Nonetheless, many of the principles and methodologies utilized in evaluating binary
classifiers can be seamlessly applied to multiclass classifiers as well.

3.5.1 Confusion Matrix

First, examine the confusion matrix. To do this, generate predictions using the cross_val_
predict() function, followed by calling the confusion_matrix() function, similar to your pre-
vious steps. The confusion matrix in figure 3.15 appears satisfactory, with most images located on
the main diagonal, indicating correct classification. However, the 5s appear slightly darker than
other digits, suggesting fewer instances of 5s in the dataset or inferior performance of the classifier
on 5s. Further investigation confirms both scenarios.
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Figure 3.15: Confusion matrix for the MNIST data set solved using a one-vs-one classifier with
Stochastic Gradient Descent and a k-fold of 3.

To turn figure 3.15 into a figure that highlights the mistakes, first normalize each entry of the
confusion matrix by the number of images in its true class so you compare error rates rather than
raw counts that would overweight frequent classes. Then set the diagonal cells to NaN so only the
off-diagonal errors remain visible, and plot the resulting matrix. The resulting figure 3.16 more
clearly highlights the errors in the confusion matrix.
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Figure 3.16: Normalized confusion matrix (similar to figure 3.15) with the diagonal removed to
emphasize errors.

The refined plot facilitates a clear understanding of the classifier’s error patterns. Rows rep-
resent actual classes, while columns depict predicted classes. Columns corresponding to classes
8 and 9 exhibit brightness, indicating numerous misclassifications as 8s or 9s. Likewise, rows for
classes 8 and 9 also appear bright, signifying frequent confusion between 8s, 9s, and other digits.
Conversely, some rows, like row 1, display darkness, indicating accurate classification of most 1s
(with few exceptions confused with 8s). Notably, errors are asymmetric; for instance, more 5s are
misclassified as 8s than vice versa.

Analyzing the confusion matrix provides valuable insights for classifier enhancement. In this
case, efforts should concentrate on improving the classification of 8s and 9s, along with address-
ing the specific 3/5 confusion. Potential strategies include gathering more training data for these
digits, devising new features (e.g., counting closed loops), or preprocessing images to emphasize
distinguishing patterns (e.g., using Scikit-Image, Pillow, or OpenCV).
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3.5.2 Analyzing Individual Errors
Analyzing individual errors provides valuable insights into the classifier’s behavior and reasons for
its failures.

Figure 3.17: Confusion matrix showing digits classified as 3s and 5s for the same classifier used to
obtain the results shown in figure 3.15.

The left half of figure 3.17 contains the blocks for images the classifier labelled as 3, while
the right half shows those it labelled as 5. A few misclassified digits are so poorly written that
even a human might hesitate, yet many errors look quite clear. Remember that a regularised linear
classifier assigns a single weight to every pixel for each class and then sums the weighted pixel
intensities to score each class.

Because just a handful of pixels separate a 3 from a 5, a linear classifier often confuses the
two. Their main distinction is the small stroke that joins the top bar to the bottom curve; even a
slight shift or rotation of this junction can flip the prediction. The linear model is therefore very
sensitive to translations and rotations. Pre-processing the images to center the digits and correct
their orientation should lessen the 3-5 confusion and improve performance across the board. 5

A non-linear model can learn more complex patterns by applying transformations (such as
kernel mappings), effectively giving different relative importance to various parts of the image,
and would therefore be better equipped to capture more intricate pixel patterns and more effectively
separate these digits.

Example 3.7 Multiclass Confusion Matrix
This example uses a One-vs-One classifier trained with Stochastic Gradient Descent to eval-
uate multiclass classification performance on the MNIST dataset. It constructs a confusion
matrix using 3-fold cross-validation and visualizes both the raw classification counts and the
normalized error rates, helping identify which digits are most commonly misclassified.
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 3.1 Load the MNIST data set
5   Created for EMCH 504 at USC
6   @author: Austin Downey
7   """
8   
9   import IPython as IP

10   IP.get_ipython().run_line_magic('reset', '-sf')
11   
12   import numpy as np
13   import scipy as sp
14   import matplotlib as mpl
15   import matplotlib.pyplot as plt
16   import sklearn as sk
17   from sklearn import linear_model
18   from sklearn import datasets
19   
20   plt.close('all')
21   
22   
23   #%% Load your data
24   
25   # this fetches "a" MNIST dataset  from openml and loads it into your environment
26   # as a Bunch, a Dictionary-like object that exposes its keys as attributes.
27   mnist = sk.datasets.fetch_openml('mnist_784',as_frame=False,parser='auto')
28   
29   # calling the DESCR key will return a description of the dataset
30   print(mnist['DESCR'])
31   
32   # calling the data key will return an array with one row per instance and one 
33   # column per feature where each features is a pixel, as defined in the key feature_names
34   X = mnist['data']
35   
36   
37   # calling the target key will return an array with the labels
38   Y = np.asarray(mnist['target'],dtype=int)
39   
40   # Each image is 784 features or 28×28 pixels, however, the features must be reshaped
41   # into a 29x29 grid to make them into a digit, where the values represents one 
42   # the intensity of one pixel, from 0 (white) to 255 (black).
43   
44   digit_id = 35 # An OK 5
45   # digit_id = 0 # An odd 5
46   # digit_id = 100 # A bad 5
47   
48   
49   test_digit = X[digit_id,:]
50   digit_reshaped = np.reshape(test_digit,(28,28))
51   
52   # plot an image of the random pixel you picked above.
53   plt.figure()
54   plt.imshow(digit_reshaped,cmap = mpl.cm.binary,interpolation="nearest")
55   plt .title('A "'+str(Y[digit_id])+'" digit from the MNIST dataset')
56   plt.xlabel('pixel column number')
57   plt.ylabel('pixel row number')
58   
59   
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 3.3 Binary confusion matirx for the MINST dataset
5   Created for EMCH 504 at USC
6   @author: Austin Downey
7   """
8   
9   import IPython as IP

10   IP.get_ipython().run_line_magic('reset', '-sf')
11   
12   import numpy as np
13   import scipy as sp
14   import matplotlib as mpl
15   import matplotlib.pyplot as plt
16   import sklearn as sk
17   from sklearn import linear_model
18   from sklearn import pipeline
19   from sklearn import datasets
20   from sklearn import metrics
21   
22   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
23   plt.close('all')
24   
25   
26   #%% Load your data
27   
28   # Fetch the MNIST dataset from openml
29   mnist = sk.datasets.fetch_openml('mnist_784',as_frame=False,parser='auto')
30   X = mnist['data'] # load the data
31   Y = np.asarray(mnist['target'],dtype=int) # load the target
32   
33   # Split the data set up into a training and testing data set
34   X_train = X[0:60000,:]
35   X_test = X[60000:,:]
36   Y_train = Y[0:60000]
37   Y_test = Y[60000:]
38   
39   #%% Train a Stochastic Gradient Descent classifier
40   
41   # Extract a subset for our "5-dector".
42   Y_train_5 = (Y_train == 5)
43   Y_test_5 = (Y_test == 5)
44   
45   # build and train the classifier
46   sgd_clf = sk.linear_model.SGDClassifier()
47   sgd_clf.fit(X_train, Y_train_5)
48   
49   # we can now test this for the "5" that we plotted earlier.
50   digit_id = 35
51   test_digit = X[digit_id,:]
52   print(sgd_clf.predict([test_digit]))
53   
54   #%% Build the Confusion Matrices
55   
56   # Return the predictions made on each test fold
57   X_train_pred = sgd_clf.predict(X_train)
58   
59   
60   # build the confusion Matrix
61   print(sk.metrics.confusion_matrix(Y_train_5, X_train_pred))
62   
63   # Now let's find all the False positive and false negative
64   confusion_booleans = np.vstack((Y_train_5, X_train_pred)).T
65   FN_index = np.where((confusion_booleans == [True,False]).all(axis=1))[0]
66   FP_index = np.where((confusion_booleans == [False,True]).all(axis=1))[0]
67   
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68   # We built a 5-detector, so:
69   # True and True is true positive (TP)
70   # False and False is True Negative (TN)
71   # True and False is false negative (FN)
72   # False and True is false positive (FP)
73   
74   
75   # from this, we see #0 is a false negative (FN), i.e. its is actually a 5 but 
76   # the classifier said it was not. We can plot this digit below
77   digit_id = 0
78   test_digit = X[digit_id,:]
79   digit_reshaped = np.reshape(test_digit,(28,28))
80   plt.figure()
81   plt.imshow(digit_reshaped,cmap = mpl.cm.binary,interpolation="nearest")
82   plt .title('A "'+str(Y[digit_id])+'" digit from the MNIST dataset')
83   plt.xlabel('pixel column number')
84   plt.ylabel('pixel row number')
85   
86   # Lastly, we see that #68 is classified as an false positive (FP), again, we can plot 

this. 
87   digit_id = 161
88   test_digit = X[digit_id,:]
89   digit_reshaped = np.reshape(test_digit,(28,28))
90   plt.figure()
91   plt.imshow(digit_reshaped,cmap = mpl.cm.binary,interpolation="nearest")
92   plt .title('A "'+str(Y[digit_id])+'" digit from the MNIST dataset')
93   plt.xlabel('pixel column number')
94   plt.ylabel('pixel row number')
95   
96   
97   
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 3.3 Binary confusion matirx for the MINST dataset
5   Created for EMCH 504 at USC
6   @author: Austin Downey
7   """
8   
9   import IPython as IP

10   IP.get_ipython().run_line_magic('reset', '-sf')
11   
12   import numpy as np
13   import scipy as sp
14   import matplotlib as mpl
15   import matplotlib.pyplot as plt
16   import sklearn as sk
17   from sklearn import linear_model
18   from sklearn import pipeline
19   from sklearn import datasets
20   from sklearn import metrics
21   
22   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
23   plt.close('all')
24   
25   
26   #%% Load your data
27   
28   # Fetch the MNIST dataset from openml
29   mnist = sk.datasets.fetch_openml('mnist_784',as_frame=False,parser='auto')
30   X = mnist['data'] # load the data
31   Y = np.asarray(mnist['target'],dtype=int) # load the target
32   
33   # Split the data set up into a training and testing data set
34   X_train = X[0:60000,:]
35   X_test = X[60000:,:]
36   Y_train = Y[0:60000]
37   Y_test = Y[60000:]
38   
39   #%% Train a Stochastic Gradient Descent classifier
40   
41   # Extract a subset for our "5-dector".
42   Y_train_5 = (Y_train == 5)
43   Y_test_5 = (Y_test == 5)
44   
45   # build and train the classifier
46   sgd_clf = sk.linear_model.SGDClassifier()
47   sgd_clf.fit(X_train, Y_train_5)
48   
49   # we can now test this for the "5" that we plotted earlier.
50   digit_id = 35
51   test_digit = X[digit_id,:]
52   print(sgd_clf.predict([test_digit]))
53   
54   #%% Build the Confusion Matrices
55   
56   # Return the predictions made on each test fold
57   X_train_pred = sgd_clf.predict(X_train)
58   
59   
60   # build the confusion Matrix
61   print(sk.metrics.confusion_matrix(Y_train_5, X_train_pred))
62   
63   # Now let's find all the False positive and false negative
64   confusion_booleans = np.vstack((Y_train_5, X_train_pred)).T
65   FN_index = np.where((confusion_booleans == [True,False]).all(axis=1))[0]
66   FP_index = np.where((confusion_booleans == [False,True]).all(axis=1))[0]
67   
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68   # We built a 5-detector, so:
69   # True and True is true positive (TP)
70   # False and False is True Negative (TN)
71   # True and False is false negative (FN)
72   # False and True is false positive (FP)
73   
74   
75   # from this, we see #0 is a false negative (FN), i.e. its is actually a 5 but 
76   # the classifier said it was not. We can plot this digit below
77   digit_id = 0
78   test_digit = X[digit_id,:]
79   digit_reshaped = np.reshape(test_digit,(28,28))
80   plt.figure()
81   plt.imshow(digit_reshaped,cmap = mpl.cm.binary,interpolation="nearest")
82   plt .title('A "'+str(Y[digit_id])+'" digit from the MNIST dataset')
83   plt.xlabel('pixel column number')
84   plt.ylabel('pixel row number')
85   
86   # Lastly, we see that #68 is classified as an false positive (FP), again, we can plot 

this. 
87   digit_id = 161
88   test_digit = X[digit_id,:]
89   digit_reshaped = np.reshape(test_digit,(28,28))
90   plt.figure()
91   plt.imshow(digit_reshaped,cmap = mpl.cm.binary,interpolation="nearest")
92   plt .title('A "'+str(Y[digit_id])+'" digit from the MNIST dataset')
93   plt.xlabel('pixel column number')
94   plt.ylabel('pixel row number')
95   
96   
97   
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1   """
2   Example 3.4 Precision and recall accuracy for the MNIST dataset
3   @author: austin_downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import numpy as np

10   import scipy as sp
11   import matplotlib.pyplot as plt
12   import sklearn as sk
13   from sklearn import linear_model
14   from sklearn import datasets
15   from sklearn import metrics
16   
17   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
18   plt.close('all')
19   
20   
21   #%% Load your data
22   
23   # Fetch the MNIST dataset from openml
24   mnist = sk.datasets.fetch_openml('mnist_784',as_frame=False,parser='auto')
25   X = np.asarray(mnist['data']) # load the data
26   Y = np.asarray(mnist['target'],dtype=int) # load the target
27   
28   # Split the data set up into a training and testing data set
29   X_train = X[0:60000,:]
30   X_test = X[60000:,:]
31   Y_train = Y[0:60000]
32   Y_test = Y[60000:]
33   
34   #%% Train a Stochastic Gradient Descent classifier
35   
36   # Extract a subset for our "5-detector".
37   Y_train_5 = (Y_train == 5)
38   Y_test_5 = (Y_test == 5)
39   
40   # build and train the classifier
41   sgd_clf = sk.linear_model.SGDClassifier()
42   sgd_clf.fit(X_train, Y_train_5)
43   
44   #%% Build the Confusion Matrices
45   
46   # Return the predictions made with the trained model
47   X_train_pred = sgd_clf.predict(X_train)
48   
49   # build the confusion Matrix
50   confusion_matrix = sk.metrics.confusion_matrix(Y_train_5, X_train_pred)
51   
52   TN = confusion_matrix[0,0]
53   FP = confusion_matrix[0,1]
54   FN = confusion_matrix[1,0]
55   TP = confusion_matrix[1,1]
56   
57   #%% Calculate Precision and Recall
58   
59   # calculate the Precision and Recall values using the commands discussed in class
60   accuracy = (TP + TN)/(TP + TN + FP + FN)
61   precision = TP/(TP+FP)
62   recall = TP/(TP+FN)
63   
64   # of course, SK learn has built-in functions for this. 
65   accuracy_SK = sk.metrics.accuracy_score(Y_train_5, X_train_pred)
66   precision_SK = sk.metrics.precision_score(Y_train_5, X_train_pred)
67   recall_SK = sk.metrics.recall_score(Y_train_5, X_train_pred)
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68   
69   # compute the F1 score for the data set
70   F1 = sk.metrics.f1_score(Y_train_5, X_train_pred)
71   
72   #%% plot the precision and recall over the threshold domain. 
73   
74   # first, compute the scores for the predictions. 
75   Y_scores= sgd_clf.decision_function(X_train)
76   
77   #Y_scores= Y3
78   # now, for the scores and the target training set, calculate the precisions, recalls, 

threshold values.
79   precisions, recalls, thresholds = sk.metrics.precision_recall_curve(Y_train_5, Y_scores)
80   
81   # now, compute the F1 score over the entire threshold range
82   F1s = 2/(1/precisions + 1/recalls)
83   
84   # plot the Precision and Recall vs threshold. 
85   plt.figure()
86   plt.plot(thresholds, precisions[:-1], "--", label="Precision")
87   plt.plot(thresholds, recalls[:-1], "-", label="Recall")
88   plt.plot(thresholds, F1s[:-1], ":", label="F1 score")
89   plt.xlabel("Threshold")
90   plt.ylabel("normalized precision\nand recall index")
91   plt.legend(loc=6,framealpha=1)
92   plt.ylim([-0.05, 1.05])
93   plt.grid(True)
94   plt.tight_layout()
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   
5   Example 3.5 k-fold cross-validationStochastic for Gradient Descent (SDG) 
6   using the MINST data set
7   
8   Developed for Machine Learning for Mechanical Engineers at the University of 
9   South Carolina

10   
11   @author: austin_downey
12   """
13   
14   import IPython as IP
15   IP.get_ipython().magic('reset -sf')
16   
17   import numpy as np
18   import scipy as sp
19   import pandas as pd
20   from scipy import fftpack, signal # have to add 
21   import matplotlib as mpl
22   import matplotlib.pyplot as plt
23   import sklearn as sk
24   from sklearn import linear_model
25   from sklearn import pipeline
26   from sklearn import datasets
27   
28   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
29   plt.close('all')
30   
31   
32   #%% Load your data
33   
34   # Fetch the MNIST dataset from openml
35   mnist = sk.datasets.fetch_openml('mnist_784',as_frame=False)
36   X = mnist['data'] # load the data
37   Y = np.asarray(mnist['target'],dtype=int) # load the target
38   
39   # Split the data set up into a training and testing data set
40   X_train = X[0:60000,:]
41   X_test = X[60000:,:]
42   Y_train = Y[0:60000]
43   Y_test = Y[60000:]
44   
45   #%% Train a Stochastic Gradient Descent classifier
46   
47   # Extract a subset for our "5-detector".
48   Y_train_5 = (Y_train == 5)
49   Y_test_5 = (Y_test == 5)
50   
51   sgd_clf = sk.linear_model.SGDClassifier()
52   
53   #%% Build a 5-detector several times so see the variation in metrics returned by SGD
54   
55   # Solve the model multiple times to see the variations
56   for i in range(5):
57   
58   # Train the model and eturn the predictions made by SGD
59   sgd_clf.fit(X_train, Y_train_5)
60   Y_train_pred = sgd_clf.predict(X_train)
61   
62   # Use SK learn model to retunr metrics
63   accuracy = sk.metrics.accuracy_score(Y_train_5, Y_train_pred)
64   precision = sk.metrics.precision_score(Y_train_5, Y_train_pred)
65   recall = sk.metrics.recall_score(Y_train_5, Y_train_pred)
66   print('accuracy is '+str(np.round(accuracy,4))+'; precision is '+str(np.round(

precision,4))+
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67   '; recall is '+str(np.round(recall,4)))
68   
69   
70   #%% Build a 5-detector using k-fold cross-validation
71   
72   # From our example we can see quite a variation in results for a model, making it
73   # hard to select the proper model. However, k-fold cross-validation can help with this. 
74   
75   
76   # make a prediction using the k-fold method to split up the data set. Again, 
77   # solve the model multiple times to see the variations
78   for i in range(5):
79   
80   # Train the model and eturn the predictions made by SGD
81   Y_train_pred = sk.model_selection.cross_val_predict(sgd_clf, X_train, Y_train_5, cv=3

)
82   
83   # Use SK learn model to retunr metrics
84   accuracy = sk.metrics.accuracy_score(Y_train_5, Y_train_pred)
85   precision = sk.metrics.precision_score(Y_train_5, Y_train_pred)
86   recall = sk.metrics.recall_score(Y_train_5, Y_train_pred)
87   print('accuracy is '+str(np.round(accuracy,4))+'; precision is '+str(np.round(

precision,4))+
88   '; recall is '+str(np.round(recall,4)))
89   
90   
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1   """
2   Example 3.6 Multiclass Stochastic Gradient Descent (SDG) for the MINST data set
3   @author: austin_downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import numpy as np

10   import matplotlib.pyplot as plt
11   import sklearn as sk
12   import time as time
13   from sklearn import linear_model
14   from sklearn import pipeline
15   from sklearn import datasets
16   from sklearn import multiclass
17   
18   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
19   plt.close('all')
20   
21   #%% Load your data
22   
23   # Fetch the MNIST dataset from openml
24   mnist = sk.datasets.fetch_openml('mnist_784',as_frame=False,parser='auto')
25   X = np.asarray(mnist['data']) # load the data
26   Y = np.asarray(mnist['target'],dtype=int) # load the target
27   
28   # Split the data set up into a training and testing data set
29   X_train = X[0:60000,:]
30   X_test = X[60000:,:]
31   Y_train = Y[0:60000]
32   Y_test = Y[60000:]
33   
34   #%% Train a Multiclass Stochastic Gradient Descent classifiers
35   
36   # SK learn has a  Multiclass and multilabel module as sk.multiclass. You can use
37   # this module to do one-vs-the-rest or one-vs-one classification. 
38   
39   # here we test a one-vs-rest classifier that uses Stochastic Gradient Descent
40   tt_1 = time.time()
41   ovr_clf = sk.multiclass.OneVsRestClassifier(sk.linear_model.SGDClassifier())
42   ovr_clf.fit(X_train, Y_train)
43   print('One-vs-Rest took '+str(time.time()-tt_1 )+' seconds to train and execute')
44   
45   # here we test a one-vs-one classifier that uses Stochastic Gradient Descent
46   tt_1 = time.time()
47   ovo_clf = sk.multiclass.OneVsOneClassifier(sk.linear_model.SGDClassifier())
48   ovo_clf.fit(X_train, Y_train)
49   print('One-vs-one took '+str(time.time()-tt_1 )+' seconds to train and execute')
50   
51   # Moreover, Scikit-Learn detects when you try to use a binary classification algorithm 

for 
52   # a multiclass classification task, and it automatically runs OvA (except for SVM 

classifiers for which it uses OvO). 
53   tt_1 = time.time()
54   multi_sgd_clf = sk.linear_model.SGDClassifier()
55   multi_sgd_clf.fit(X_train, Y_train) # y_train, not y_train_5
56   print('SK learns automated selection (OvA) took '+str(time.time()-tt_1 )+' seconds to 

train and execute')
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1   """
2   Example 3.7 Multiclass confusion matrix for the MINST data set
3   @author: austin_downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import numpy as np

10   import matplotlib.pyplot as plt
11   import sklearn as sk
12   
13   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
14   plt.close('all')
15   
16   #%% Load your data
17   
18   # Fetch the MNIST dataset from openml
19   mnist = sk.datasets.fetch_openml('mnist_784',as_frame=False,parser='auto')
20   X = np.asarray(mnist['data']) # load the data and convert to np array
21   Y = np.asarray(mnist['target'],dtype=int) # load the target
22   
23   # Split the data set up into a training and testing data set
24   X_train = X[0:60000,:]
25   X_test = X[60000:,:]
26   Y_train = Y[0:60000]
27   Y_test = Y[60000:]
28   
29   #%% Confusion Matrix for a Multiclass classifier. 
30   
31   # Use the one-vs-one classifier that uses Stochastic Gradient Descent as this is 
32   # faster for this specific data set
33   ovo_clf = sk.multiclass.OneVsOneClassifier(sk.linear_model.SGDClassifier())
34   
35   # make a prediction for every case using the k-fold method. 
36   Y_train_pred = sk.model_selection.cross_val_predict(ovo_clf, X_train, Y_train, cv=3)
37   conf_mx = sk.metrics.confusion_matrix(Y_train, Y_train_pred)
38   print(conf_mx)
39   
40   # plot the results
41   fig = plt.figure(figsize=(4,4))
42   pos = plt.imshow(conf_mx) #, cmap=plt.cm.gray)
43   cbar = plt.colorbar(pos)
44   cbar.set_label('number of classified digits')
45   plt.ylabel('actual digit')
46   plt.xlabel('estimated digit')
47   plt.savefig('confusion_matrix',dpi=300)
48   
49   # Normalize the confusion matrix by class size to compare error rates, not raw counts.
50   row_sums = conf_mx.sum(axis=1, keepdims=True)
51   norm_conf_mx = conf_mx / row_sums
52   
53   # Next, we remove the high values along the diagonal. This is done by converting the 
54   # confusion matrix to a float data type, and replacing everything on the diagonal with 

NaNs.
55   conf_mx_noise = np.asarray(norm_conf_mx,dtype=np.float32)
56   np.fill_diagonal(conf_mx_noise, np.NaN)
57   
58   # plot the results but only consider the noise
59   fig = plt.figure(figsize=(4,4))
60   pos = plt.imshow(conf_mx_noise) #, cmap=plt.cm.gray)
61   cbar = plt.colorbar(pos)
62   cbar.set_label('normalized classification error')
63   plt.ylabel('actual digit')
64   plt.xlabel('estimated digit')
65   plt.savefig('confusion_matrix_error',dpi=300)
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4 Regression-Based Classification
Certain algorithms that were first developed for regression can be adapted for classification, and
some classifiers can be modified to predict continuous values. Converting a linear regressor into
a classifier by adding a logistic link, for instance, retains the original coefficient vector, which
makes it easy to see how each input feature influences the decision. As these dual-purpose mod-
els expose many of the hyper-parameters found in their regression versions, they often provide
more opportunities for fine-tuning and clearer interpretability than algorithms designed purely for
classification.

4.1 Logistic Regression
Logistic Regression, sometimes called logit regression, models the probability that a sample be-
longs to a specific class, such as the chance that an email is spam. When this probability exceeds
50%, the model predicts the positive class (label “1”); otherwise, it predicts the negative class
(label “0”). It therefore acts as a binary classifier.

The predicted probability is
p̂ = hθ (X) = σ(θ T ·X). (4.1)

Here p̂ is the estimated probability, and σ(·) is the sigmoid function, an S-shaped curve that maps
any real number to the interval (0,1). The logistic function is defined in Equation 4.2 and illustrated
in Figure 4.1. As before, hθ (X) denotes the hypothesis that the input matrix X , augmented with a
bias term, belongs to the positive class under the parameters θ .

σ(x) =
1

1+ e−x . (4.2)

Figure 4.1: Sigmoid function that maps any real-valued input x to a value between 0 and 1.

Once the probability p̂ = hθ (X) that an instance X belongs to the positive class has been esti-
mated using Logistic Regression, the prediction (ŷ) can be made. ŷ is calculated as

ŷ =

{
0 if p̂ < 0.5,
1 if p̂ ≥ 0.5.

(4.3)

Note that σ(x)< 0.5 when x < 0, and σ(x)≥ 0.5 when x ≥ 0. Therefore, the Logistic Regression
model predicts 0 if θ T ·X is negative, and 0 if it is positive.
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Now that we understand how logistic regression assigns probabilities and produces predictions,
let’s walk through a concise example that shows its training procedure and the associated cost func-
tion. Training seeks parameter values θ that give high predicted probabilities to positive examples
(y = 1) and low probabilities to negative ones (y = 0). This aim is captured by the cost defined
in equation 4.4, which evaluates a single training sample x. To achieve this, we require a cost
function, such as

C(θ) =

{
− log(p̂) if y = 1,
− log(1− p̂) if y = 0.

(4.4)

which is plotted in 4.2.

Figure 4.2: Cost function behavior for classification that heavily penalizes incorrect predictions.

The cost function in equation 4.4 behaves intuitively: − log(p̂) increases sharply as p̂ → 0,
so the loss is large when the model assigns a probability near0 to a positive example. It likewise
produces a high loss when the model predicts a probability close to1 for a negative example. Con-
versely, because − log(p̂)→ 0 as p̂→ 1, the loss becomes negligible when the predicted probability
is near1 for a positive instance or near0 for a negative one, aligning with our expectations.

The overall cost, denoted J(θ), is the mean loss across all m training examples. This metric is
commonly called the log-loss and written in equation 4.5:

J(θ);=;− 1
m

m

∑
i=1

[
y(i) log

(
p̂(i)

)
;+;

(
1− y(i)

)
log

(
1− p̂(i)

)]
. (4.5)

Because there is no closed-form solution for the parameters θ (embedded within p̂), the mini-
mum must be found with an iterative optimizer. The cost surface is convex, so gradient descent or
another suitable algorithm will reach the global minimum provided the learning rate is reasonable
and enough iterations are allowed. The gradient of the cost with respect to the jth parameter θ j is
given in equation 4.6:

∂J
∂θ j

;=;
1
m

m

∑
i=1

[
σ
(
θ

TX (i))− y(i)
]
,x(i)j . (4.6)
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This equation resembles the partial derivative used in gradient descent. For every training
example, it finds the prediction error, multiplies it by the jth feature value, and then averages these
products over all m samples. With the resulting gradient vector of partial derivatives, you can
update the parameters using the Batch Gradient Descent algorithm, completing the training of a
Logistic Regression model. Stochastic Gradient Descent performs the update after each single
example, while Mini-batch Gradient Descent updates the parameters after processing each mini-
batch.

Review 4.1 Iris Flower Dataset
The Iris dataset, collected by botanist Edgar Anderson in 1935, lists sepal length, sepal
width, petal length, and petal width for 150 flowers drawn equally from three species: Iris-
Setosa, Iris-Versicolor, and Iris-Virginic (refer to Figure 4.3)a. Statistician Ronald Fisher
analysed these measurements in a 1936 study on linear discriminant analysis, and the data
have since become a standard benchmark in statistics and machine learning because they are
small, clean, and perfectly balanced, making them ideal for testing classification algorithms
and visualisation techniques.

Figure 4.3: Flowers representing three species of iris plants a
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Figure 4.4: Iris dataset scatterplot showing sepal length vs. sepal width (left) and petal
length vs. petal width (right).
aDiego Mariano, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Example 4.1 Iris Dataset Exploration
This example introduces the Iris dataset (Figure 4.3), originally compiled by Ronald Fisher. It
demonstrates how to load the dataset, access feature and label information, and visualize the
relationships between sepal and petal measurements across the three iris species.

4.1.1 1-D Decision Boundaries

The petal width of Iris-virginica flowers usually lies between 1.4 cm and 2.5 cm, whereas the other
two species range from 0.1 cm to 1.8 cm. Because these intervals overlap, the classifier’s certainty
changes across the scale. Above roughly 2 cm, the model is confident that any given sample is
Iris-virginica. Moreover, below 1 cm it is equally sure the flower is not Iris-virginica (This means
the model redicts high probability for the class “Not Iris-Virginica”). In between the limits of the
classes, the model is unsure. When you call predict() instead of predict_proba(), it outputs
the most likely class, creating a decision boundary around 1.6 cm where both class probabilities
reach 50 percent. Thus, flowers with petal widths greater than 1.6 cm lead to a prediction of Iris-
virginica, while flowers with smaller petal widths yield the opposite prediction even if confidence
is low.

82



ML for Eng. Problem Solving 4.1 Logistic Regression

Figure 4.5: Decision boundary for the flowers of three Iris plant species with C set to C = 1010 .

Example 4.2 1D Logistic Regression
This example builds a logistic regression model to classify Iris-Virginica based on a single
feature: petal width. It visualizes class probabilities and shows the decision boundary at the
50% threshold.

4.1.2 2-D Decision Boundaries

Figure 4.6 plots petal width against petal length for the Iris samples. After training, the logistic
regression model assigns each point the probability that the flower is Irisvirginica. The dashed
line marks where this probability equals50 %, forming the decision boundary, which is linear.
The parallel contour lines show equal-probability levels from 10% to 90%. Points be beyond the
top-right line have a greater than 90% probability of being classified as Iris-Virginica by the model.

Figure 4.6: A 2D decision boundary for the Iris dataset.
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Example 4.3 2D Decision Boundary
This example uses logistic regression to classify the Iris-Virginica species based on petal
length and width. A 2D decision boundary is visualized in the petal feature space, with pre-
diction regions and probability contours illustrating classifier confidence.

4.2 Softmax Regression
Logistic Regression can be generalised to handle many classes in a single model, so there is no
need to train and merge several binary classifiers. This multiclass version is called Softmax Re-
gression, or Multinomial Logistic Regression. Softmax Regression provides a straightforward way
to perform regression-based classification when more than two classes are present. For an input
vector x, the model first computes a score sk(x) for every class k, then turns these scores into class
probabilities with the softmax (normalised exponential) function. The score is obtained exactly as
in linear regression:

sk(x) = xT
θθθ
(k). (4.7)

Here each class has its own parameter vector θ
(k), and the collection of these vectors is usually

stored as the rows of a parameter matrix Θ.
After the model has calculated a score for each class given an input x, it converts these scores

to probabilities with the softmax function. For class k the predicted probability is

p̂k = σ
(
s(x)

)
k =

exp
(
sk(x)

)
∑

K
j=1 exp

(
s j(x)

) . (4.8)

In this expression, s(x) is the vector of class scores for the input, σ
(
s(x)

)
k is the probability that x

belongs to class k, and K is the total number of classes. In short, equation 4.8 exponentiates each
score and then normalises the results by dividing by the sum of all exponentials so the probabilities
sum to one.

Like logistic regression, a Softmax Regression model assigns an input to the class whose pre-
dicted probability is largest, which coincides with the class that has the highest score:

ŷ = argmax
k

σ
(
s(x)

)
k = argmax

k
sk(x) = argmax

k

(
(θ (k))T ·x

)
. (4.9)

NOTE
The argmax operator returns the argument that maximises a function. In this setting, it

yields the index k for which the estimated probability σ
(
s(x)

)
k attains its largest value.

With probability estimation and prediction established, we next consider training. The task is
to learn parameters that place a large probability on the correct class and correspondingly small
probabilities on all others. This objective is met by minimising the cost in equation 4.10, known as
the cross entropy, which heavily penalises the model when it assigns a low probability to the true
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label. Cross entropy is widely used to measure how well predicted class probabilities agree with
the actual classes. The cost function is

J(Θ) =− 1
m

m

∑
i=1

K

∑
k=1

y(i)k log(p̂(i)k ). (4.10)

NOTE
In this expression, y(i)k = 1 when the ith sample’s true label is class k, and y(i)k = 0 otherwise.

When considering only two classes (K = 2), it’s important to highlight that this cost function
aligns with the Logistic Regression’s cost function, commonly referred to as log loss (refer to
Equation 4.5).

The gradient of the cross-entropy cost with respect to θ
(k) is

∇
θ (k)J(Θ) =

1
m

m

∑
i=1

(p̂(i)k − y(i)k X (i)). (4.11)

By computing this vector for each class, you obtain the full gradient, which can then be fed to
Gradient Descent or another optimizer to find the parameter matrix Θ that minimises the cost.

Applying Softmax Regression to the three-class iris problem in Scikit-Learn is straightforward.
The LogisticRegression estimator normally uses one-versus-all when more than two classes
are present, but setting multi_class=“multinomial” activates true Softmax learning. Choose
a solver that supports this option, such as lbfgs (see the library documentation). The model
applies ℓ2 regularisation by default, governed by the hyperparameter C. After training, a flower
with 5 cm long and 2 cm wide petals is classified as Iris-Virginica with probability 94.2%, while
the probability of Iris versicolor is 5.8%.

NOTE
The Softmax Regression classifier is multiclass, not multioutput. As such, Softmax Re-

gression can only predict one class at a time, so it works for problems where each input
belongs to exactly one category-like classifying an email as spam, promotions, or updates. It
can’t be used for cases where multiple labels may apply, such as tagging a news article with
topics like politics, economics, and technology all at once.

Figure 4.7 displays the decision regions, shaded with background colours to mark each class.
The borders separating any two classes are straight lines. The plot also includes contour curves
for the predicted probability of the Iris-Versicolor class. At the point where all three borders meet,
every class receives a probability of 33%, so the selected class can have a confidence below 50%.
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Figure 4.7: Softmax classification for the three iris plant species.

Example 4.4 Softmax Classification
This example applies softmax regression to classify all three iris species using petal length and
width. It builds a multinomial logistic regression model and visualizes the decision boundaries
along with confidence contours over the 2D petal feature space.
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1   """
2   Example 4.1 Introduction to the IRIS data set
3   @author: austin_downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import matplotlib.pyplot as plt

10   import sklearn as sk
11   
12   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
13   plt.close('all')
14   
15   
16   #%% Load your data
17   
18   # We will use the Iris data set.  This dataset was created by biologist Ronald
19   # Fisher in his 1936 paper "The use of multiple measurements in taxonomic 
20   # problems" as an example of linear discriminant analysis
21   
22   iris = sk.datasets.load_iris()
23   
24   # for simplicity, extract some of the data sets
25   X = iris['data'] # this contains the length of the pedals and sepals
26   Y = iris['target'] # contains what type of flower it is
27   Y_names = iris['target_names'] # contains the name that aligns with the type of the 

flower
28   feature_names = iris['feature_names'] # the names of the features
29   
30   # plot the Sepal data
31   plt.figure(figsize=(6.5,3))
32   plt.subplot(121)
33   plt.grid(True)
34   plt.scatter(X[Y==0,0],X[Y==0,1],marker='o')
35   plt.scatter(X[Y==1,0],X[Y==1,1],marker='s')
36   plt.scatter(X[Y==2,0],X[Y==2,1],marker='d')
37   plt.xlabel(feature_names[0])
38   plt.ylabel(feature_names[1])
39   
40   
41   plt.subplot(122)
42   plt.grid(True)
43   plt.scatter(X[Y==0,2],X[Y==0,3],marker='o',label=Y_names[0])
44   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',label=Y_names[1])
45   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',label=Y_names[2])
46   plt.xlabel(feature_names[2])
47   plt.ylabel(feature_names[3])
48   plt.legend(framealpha=1)
49   plt.tight_layout()
50   
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1   """
2   Example 4.2 1D Decision boundary for the Iris dataset
3   @author: austin_downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import numpy as np

10   import matplotlib.pyplot as plt
11   import sklearn as sk
12   
13   
14   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
15   plt.close('all')
16   
17   
18   #%% Load your data
19   
20   # We will use the Iris data set.  This dataset was created by biologist Ronald
21   # Fisher in his 1936 paper "The use of multiple measurements in taxonomic 
22   # problems" as an example of linear discriminant analysis
23   
24   iris = sk.datasets.load_iris()
25   
26   # for simplicity, extract some of the data sets
27   X = iris['data'] # this contains the length of the pedals and sepals
28   Y = iris['target'] # contains what type of flower it is
29   Y_names = iris['target_names'] # contains the name that aligns with the type of the 

flower
30   feature_names = iris['feature_names'] # the names of the features
31   
32   # plot the Sepal data
33   plt.figure(figsize=(6.5,3))
34   plt.subplot(121)
35   plt.grid(True)
36   plt.scatter(X[Y==0,0],X[Y==0,1],marker='o')
37   plt.scatter(X[Y==1,0],X[Y==1,1],marker='s')
38   plt.scatter(X[Y==2,0],X[Y==2,1],marker='d')
39   plt.xlabel(feature_names[0])
40   plt.ylabel(feature_names[1])
41   
42   
43   plt.subplot(122)
44   plt.grid(True)
45   plt.scatter(X[Y==0,2],X[Y==0,3],marker='o',label=Y_names[0])
46   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',label=Y_names[1])
47   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',label=Y_names[2])
48   plt.xlabel(feature_names[2])
49   plt.ylabel(feature_names[3])
50   plt.legend(framealpha=1)
51   plt.tight_layout()
52   
53   
54   #%% Train a Logistic Regression model
55   
56   # define the features (X) and the output (Y)
57   X_pedal = iris["data"][:, 3:] # consider just the petal width
58   y_pedal = iris["target"] == 2 # 1 if Iris-Virginica, else 0
59   
60   # Build the logistic Regression model and train it. 
61   log_reg = sk.linear_model.LogisticRegression( C=1)
62   log_reg.fit(X_pedal, y_pedal)
63   # Note: The hyper-parameter controlling the regularization strength of a 
64   # Scikit-Learn LogisticRegression model is not alpha (as in other linear models),
65   # but its  inverse: C. The higher the value of C, the less the model is regularized.
66   
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67   # Build a range of the feature (X) to predict over. Here we just consider pedal width.
68   X_new = np.linspace(0, 3, 1000)
69   X_new = np.expand_dims(X_new, axis=1)
70   
71   # Use the Logistic Regression Model to predict the pedal type based on pedal width
72   y_proba = log_reg.predict_proba(X_new)
73   
74   # plot the probability plots
75   plt.figure(figsize=(6.5,3))
76   plt.grid(True)
77   
78   # plot the data used for training, set at 0 and 1
79   plt.scatter(X[Y==0,3],np.zeros(50),marker='o',label=Y_names[0],zorder=10)
80   plt.scatter(X[Y==1,3],np.zeros(50),marker='s',label=Y_names[1],zorder=10)
81   plt.scatter(X[Y==2,3],np.ones(50),marker='d',label=Y_names[2],zorder=10)
82   
83   # plot the probability 
84   plt.plot(X_new,y_proba[:,0], '--',color=cc[3],label='Not Iris - Virgincia')
85   plt.plot(X_new,y_proba[:,1],color=cc[2], label='Iris - Virgincia')
86   
87   # find and plot the 50% decision boundary
88   x_at_50 = X_new[np.argmin(np.abs(y_proba[:,0] - 0.5))]
89   plt.vlines(x_at_50,0,1,color='k',linestyles=':',label='Decision Boundary')
90   
91   plt.xlabel('pedal width (cm)')
92   plt.ylabel('probability')
93   plt.legend(framealpha=1)
94   plt.tight_layout()
95   
96   # make predictions on the model trained on the data.
97   log_reg.predict([[1.7]])
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 4.3 2D Decision boundary for the Iris dataset
5   
6   Developed for Machine Learning for Mechanical Engineers at the University of
7   South Carolina
8   
9   @author: austin_downey

10   """
11   
12   import IPython as IP
13   IP.get_ipython().run_line_magic('reset', '-sf')
14   
15   
16   import numpy as np
17   import matplotlib.pyplot as plt
18   import sklearn as sk
19   
20   
21   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
22   plt.close('all')
23   
24   
25   #%% Load your data
26   
27   # We will use the Iris data set.  This dataset was created by biologist Ronald
28   # Fisher in his 1936 paper "The use of multiple measurements in taxonomic 
29   # problems" as an example of linear discriminant analysis
30   
31   iris = sk.datasets.load_iris()
32   
33   # for simplicity, extract some of the data sets
34   X = iris['data'] # this contains the length of the petals and sepals
35   Y = iris['target'] # contains what type of flower it is
36   Y_names = iris['target_names'] # contains the name that aligns with the type of the 

flower
37   feature_names = iris['feature_names'] # the names of the features
38   
39   # plot the Sepal data
40   plt.figure(figsize=(6.5,3))
41   plt.subplot(121)
42   plt.grid(True)
43   plt.scatter(X[Y==0,0],X[Y==0,1],marker='o',zorder=10)
44   plt.scatter(X[Y==1,0],X[Y==1,1],marker='s',zorder=10)
45   plt.scatter(X[Y==2,0],X[Y==2,1],marker='d',zorder=10)
46   plt.xlabel(feature_names[0])
47   plt.ylabel(feature_names[1])
48   
49   
50   plt.subplot(122)
51   plt.grid(True)
52   plt.scatter(X[Y==0,2],X[Y==0,3],marker='o',label=Y_names[0],zorder=10)
53   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',label=Y_names[1],zorder=10)
54   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',label=Y_names[2],zorder=10)
55   plt.xlabel(feature_names[2])
56   plt.ylabel(feature_names[3])
57   plt.legend(framealpha=1)
58   plt.tight_layout()
59   
60   
61   #%% plot the Linear decision boundary in 2D "Petal" space 
62   
63   # build the training and target set.
64   X_train = X[:, (2, 3)] # petal length, petal width
65   y_train = Y == 2
66   
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67   # build the Logistic Regression model
68   log_reg = sk.linear_model.LogisticRegression(C=10**10)
69   # Note: The hyper-parameter controlling the regularization strength of a Scikit-Learn 
70   # LogisticRegression model is not alpha (as in other linear models), but its 
71   # inverse: C. The higher the value of C, the less the model is regularized.
72   
73   # train the Logistic Regression model
74   log_reg.fit(X_train, y_train)
75   
76   # build the x values for the predictions over the entire "petal space"
77   x_grid, y_grid = np.meshgrid(
78   np.linspace(2.8, 7, 500),
79   np.linspace(0.3, 3, 200),
80   )
81   X_new = np.vstack((x_grid.reshape(-1), y_grid.reshape(-1))).T # build a vector format of 

the mesh grid
82   
83   # predict on the vectorized format
84   y_predict = log_reg.predict(X_new)
85   y_proba = log_reg.predict_proba(X_new)
86   
87   # convert back to meshgrid shape for plotting
88   zz_predict = y_predict.reshape(x_grid.shape)
89   zz_proba = y_proba[:, 1].reshape(x_grid.shape)
90   
91   # plot the 2D "petal space"
92   plt.figure(figsize=(6.5,3))
93   plt.grid(True)
94   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',color=cc[1],label=Y_names[1],zorder=10)
95   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',color=cc[2],label=Y_names[2],zorder=10)
96   plt.contourf(x_grid, y_grid, zz_predict, cmap='Pastel2')
97   contour = plt.contour(x_grid, y_grid, zz_proba, [0.100,0.5,0.900],cmap=plt.cm.brg)
98   plt.clabel(contour, inline=1) # add the labels to the plot
99   plt.xlabel(feature_names[2])

100   plt.ylabel(feature_names[3])
101   plt.legend()
102   plt.tight_layout()
103   
104   
105   
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1   """
2   Example 4.4 Softmax decision boundary for the Iris dataset
3   @author: austin_downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().magic('reset -sf')
8   
9   import numpy as np

10   import matplotlib.pyplot as plt
11   import sklearn as sk
12   
13   
14   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
15   plt.close('all')
16   
17   
18   #%% Load your data
19   
20   # We will use the Iris data set.  This dataset was created by biologist Ronald
21   # Fisher in his 1936 paper "The use of multiple measurements in taxonomic 
22   # problems" as an example of linear discriminant analysis
23   iris = sk.datasets.load_iris()
24   
25   # for simplicity, extract some of the data sets
26   X = iris['data'] # this contains the length of the petals and sepals
27   Y = iris['target'] # contains what type of flower it is
28   Y_names = iris['target_names'] # contains the name that aligns with the type of the 

flower
29   feature_names = iris['feature_names'] # the names of the features
30   
31   # plot the Sepal data
32   plt.figure(figsize=(6.5,3))
33   plt.subplot(121)
34   plt.grid(True)
35   plt.scatter(X[Y==0,0],X[Y==0,1],marker='o',zorder=10)
36   plt.scatter(X[Y==1,0],X[Y==1,1],marker='s',zorder=10)
37   plt.scatter(X[Y==2,0],X[Y==2,1],marker='d',zorder=10)
38   plt.xlabel(feature_names[0])
39   plt.ylabel(feature_names[1])
40   
41   plt.subplot(122)
42   plt.grid(True)
43   plt.scatter(X[Y==0,2],X[Y==0,3],marker='o',label=Y_names[0],zorder=10)
44   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',label=Y_names[1],zorder=10)
45   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',label=Y_names[2],zorder=10)
46   plt.xlabel(feature_names[2])
47   plt.ylabel(feature_names[3])
48   plt.legend(framealpha=1)
49   plt.tight_layout()
50   
51   
52   #%% Softmax Regression
53   
54   # build the training and target set.
55   X_train = X[:, (2, 3)] # petal length, petal width
56   y_train = Y
57   
58   # build and train the softmax model
59   softmax_reg = sk.linear_model.LogisticRegression(multi_class="multinomial",
60   solver="lbfgs", C=10)
61   softmax_reg.fit(X_train, y_train)
62   
63   # build the x values for the predictions over the entire "petal space"
64   x_grid, y_grid = np.meshgrid(
65   np.linspace(0, 7, 500),
66   np.linspace(0, 4, 200),
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67   )
68   X_new = np.vstack((x_grid.reshape(-1), y_grid.reshape(-1))).T # build a vector format of 

the mesh grid
69   
70   # predict on the vectorized format
71   y_predict = softmax_reg.predict(X_new)
72   y_proba = softmax_reg.predict_proba(X_new)
73   
74   
75   # convert back to meshgrid shape for plotting
76   zz_predict = y_predict.reshape(x_grid.shape)
77   zz_proba = y_proba[:, 1].reshape(x_grid.shape) # the selected column selects the 

probability that the data falls within this class. 
78   
79   # plot the 2D "petal space"
80   plt.figure(figsize=(6.5, 4))
81   plt.scatter(X[Y==0,2],X[Y==0,3],marker='o',label=Y_names[0],zorder=10)
82   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',label=Y_names[1],zorder=10)
83   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',label=Y_names[2],zorder=10)
84   plt.contourf(x_grid, y_grid, zz_predict, cmap='Pastel2')
85   contour = plt.contour(x_grid, y_grid, zz_proba, [0.100,0.5,0.900], cmap=plt.cm.brg)
86   plt.clabel(contour, inline=1)
87   plt.xlabel(feature_names[2])
88   plt.ylabel(feature_names[3])
89   plt.legend()
90   plt.tight_layout()
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5 Decision Trees
Decision trees are flexible learners that work well for classification, regression, and multi-output
problems. A single tree can capture intricate relationships in the data with minimal preprocessing.
Each tree also acts as the core building block of ensemble methods such as Random Forests, which
are among the most reliable models in modern practice. One limitation is size: a fully grown tree
can become quite large, so pruning or depth limits are often applied to control memory use and
reduce overfitting.

In this chapter, we will explore the essentials of Decision Trees, starting with their training,
visualization, and prediction processes. We will then look into the CART (Classification and Re-
gression Trees) training algorithm, which Scikit-Learn utilizes for constructing Decision Trees.
Additionally, we will examine how to regulate the complexity of Decision Trees and adapt them
for regression tasks. The chapter concludes by addressing some inherent limitations of Decision
Trees.

Figure 5.1: The basic connect of a decision tree, showing (a) how a decision tree is built, and
(b) the developed decision tree.

5.1 Decision Tree Classification
Figure 5.2 shows the regions formed by the decision tree. The solid vertical line marks the root split
at depth 0, where petal length equals 2.45 cm. All samples on the left of this line belong solely to
Iris setosa, so no further division is needed there. The right half still mixes species, so the depth-1
right child splits again at petal width 1.75 cm, indicated by the dashed line. With max_depth=2 the
tree stops at this point. If max_depth were increased to 3, the two depth-2 leaves would introduce
additional boundaries, drawn as dotted lines.
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Figure 5.2: Decision Tree decision boundaries.

A decision tree for the Iris Dataset looks like Figure 5.3. Let us examine how the Decision Tree
processes predictions. Suppose you come across an iris and need to classify it. Start at the root
node (depth=0), which asks whether the flower’s petal length is less than 2.45 cm. If the answer
is yes, move to the root’s left child (depth=1). This child is a leaf, so no further questions follow.
The class stored in that leaf is Iris-setosa, and the tree therefore labels the sample as setosa.

Figure 5.3: Decision tree for the Iris Dataset trained using the CART algorithms.

In Figure 5.3, each node reports the split criterion, Gini impurity, sample count, and class
distribution. Fill colors denote the predicted species; orange for Setosa, green for Versicolor, and
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purple for Virginica. Shade intensity conveys confidence: darker hues indicate purer (more certain)
leaves, whereas white represents complete uncertainty. Consider a second iris whose petal length
is greater than 2.45 cm. From the root you move to its right child (depth 1). This internal node
asks a new question: is the petal width less than 1.75 cm? If yes, the flower is classified as Iris-
versicolor (depth=2, left leaf). If no, it is labeled Iris-virginica (depth=2, right leaf). The decision
path is clear and easy to follow.

The attributes of a node include:

• class: the class label stored in the leaf.

• samples: the number of training instances that reach the node. For example, 100 flowers
have petal length >2.45 cm (depth1, right); among them, 54 also have petal width < 1.75 cm
(depth2, left).

• value: a three-element vector giving the count of instances from each species at the node.
The bottom-right leaf, for instance, contains 0 Iris-setosa, 1 Iris-versicolor, and 45 Iris-
virginica.

• gini: the Gini impurity. A node is pure when gini = 0, meaning all samples belong to the
same class. The depth-1 left node, which holds only Iris-setosa, is pure.

The Gini impurity Gi for the ith node is computed using

Gi = 1−
n

∑
k=1

p2
i,k, (5.1)

where pi,k is the proportion of class k instances among the training instances at the ith node. For
instance, the Gini score for the depth-2 left node is calculated as follows: 1−(0/54)2−(49/54)2−
(5/54)2 ≈ 0.168. We will discuss an alternative impurity measure later.

5.1.1 Class Probability Estimation

A Decision Tree can estimate the likelihood that a sample belongs to class k. The algorithm traces
the sample’s path to its leaf node and then reports the fraction of training instances of class k found
in that leaf. Consider a flower with petals 5cm long and 1.5cm wide. This sample reaches the
depth-2 left leaf, which contains 54 training flowers: 0 Iris-setosa, 49 Iris-versicolor, and 5 Iris-
virginica. The tree therefore assigns probabilities of 0%, 90.7%, and 9.3% to the three classes,
respectively. When asked for a class label, it selects Iris-versicolor, the class with the highest
probability.

Interestingly, the same estimated probabilities apply throughout the bottom-right rectangle of
Figure 5.2, even in a scenario where the petal dimensions are 6 cm by 1.5 cm where one might
intuitively expect an Iris-Virginica classification.
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Example 5.1 Decision Tree Classifier
This example uses Scikit-Learn’s DecisionTreeClassifier to classify iris species based
on petal features. The decision process is visualized using Graphviz, showing the structure of
learned rules and how decisions are made based on feature thresholds. This online viewer is
the easiest way to do that https://dreampuf.github.io/GraphvizOnline/

5.2 The CART Training Algorithm
Scikit-Learn trains decision trees with the Classification and Regression Tree (CART) algorithma,
a process often called “growing” the tree. At each node the algorithm splits the local training set
into two parts by selecting a feature k and a threshold tk, for example “petal length ≤ 2.45 cm”. It
evaluates every candidate pair (k, tk) and chooses the one that yields the purest child nodes, judging
purity by a weighted combination of each child’s impurity measure and sample count.

Figure 5.4: Illustration of the CART algorithm process.

The objective function it aims to minimize during this process is

J(k, tk) =
mleft

m
Gleft +

mright

m
Gright. (5.2)

In this equation, Gleft/right measures the impurity of the left/right subset, and mleft/right is the number
of instances in the left/right subset. After the initial split, the algorithm continues to divide the
resulting subsets and their subsequent divisions recursively. This recursive process halts when it
reaches the predefined maximum depth (max_depth) set through a hyperparameter, or if no further
impurity-reducing splits can be found.

Unlike linear models that assume a specific data structure, Decision Trees impose few assump-
tions on their initial data. If not appropriately constrained, a Decision Tree can intricately conform
to the training data, leading to overfitting. This model type is described as nonparametric, not
due to a lack of parameters, which it can have in abundance, but because the parameters are not
predetermined before training, allowing the model’s structure to freely mirror the data intricacies.
Conversely, a parametric model, like a linear model, has a fixed number of parameters, limiting its
flexibility but also minimizing overfitting risks while potentially increasing underfitting risks.
aBreiman, Leo. Classification and regression trees. Routledge, 2017
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To mitigate overfitting in Decision Trees, it is essential to control the model’s freedom during
training through regularization. The regularization hyperparameters vary by the algorithm, but
typically, the tree’s maximum depth can be restricted. In Scikit-Learn, this is managed by the
max_depth hyperparameter, which is unlimited by default. Lowering max_depth helps regularize
the model, thereby reducing overfitting likelihood.

Other parameters in Scikit-Learn’s DecisionTreeClassifier also influence the tree’s structure:

• min_samples_split: The minimum number of samples required to split a node.

• min_samples_leaf: The minimum number of samples a leaf node must have.

• min_weight_fraction_leaf: Similar to min_samples_leaf, but expressed as a fraction
of total weighted instances.

• max_leaf_nodes: The maximum number of leaf nodes.

• max_features: The maximum number of features evaluated for splitting at each node.

Adjusting these parameters by increasing min_* values or decreasing max_* values will help reg-
ularize the model.

Figure 5.5 illustrates two Decision Trees trained on the moons dataset: one on the left with
default hyperparameters (unrestricted) and another on the right with min_samples_leaf=4. The
left model appears to be overfitting, whereas the right model, with its restrictions, likely offers
better generalization.

Figure 5.5: Regularization effects using min_samples_leaf
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5.2.1 Computational Complexity

To predict with a Decision Tree the algorithm follows a path from the root to a leaf. Because most
trained trees are roughly balanced, this path crosses about

Tpredict = O
(
log2 m

)
, (5.3)

nodes, where m is the number of training samples. Each node tests a single feature, so the predic-
tion cost in equation 5.3 is unaffected by the total feature count and is therefore very fast.

Training is costlier. At every split the algorithm scans each candidate feature (or the subset
limited by max_features) over all samples that reach the node. For n input features the total work
across all levels is

Ttrain = O
(
n×m logm

)
, (5.4)

because the tree has roughly log2 m layers and each layer processes a shrinking fraction of the m
samples.

When the dataset contains only a few thousand samples, enabling presort=True in Scikit-
Learn can shorten training time, but for larger datasets the presorting step turns into a bottleneck
and the standard (unsorted) approach is quicker.

5.2.2 Entropy verse Gini Impurity

Decision Trees in sklearn use the Gini impurity as the default criterion for node purity, entropy can
also be utilized by setting the criterion hyperparameter to “entropy”. Originally a thermodynamic
concept representing molecular disorder, entropy reaches zero when molecules are in a complete
state of rest and order. This concept was later adopted in information theory, introduced by Shan-
non, to quantify the average informational content in messages entropy is zero when all messages
are identical. In the realm of Machine Learning, entropy serves as a measure of impurity: it is zero
in a dataset if all its elements belong to a single class. The entropy for the ith node is defined as

Hi =−
n

∑
k=1

pi,k ̸=0

pi,k log2(pi,k). (5.5)

The choice between Gini impurity and entropy often results in negligible differences, produc-
ing similar trees. Gini impurity has a slight computational advantage and is thus the default choice.
However, it tends to separate the most frequent class into a distinct branch, whereas entropy gen-
erally yields more balanced trees.

5.3 Decision Tree Regression
Decision Trees are not limited to classification tasks; they can also be adapted for regression. To
illustrate, we use Scikit-Learn’s DecisionTreeRegressor to train a regression tree on a noisy
linear dataset with max_depth=2. The structure of this tree is displayed in Figure 5.6. In contract
to the color scheme for classification, the change in color shades here relate to the predicted value
of y.
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Figure 5.6: A regression model developed using a Decision Tree, showing the: (a) model superim-
posed over noisy data, and (b) the decision tree developed for the task.

The workings of a regression tree mirror those of a classification tree, except that each leaf
holds a continuous prediction instead of a class label. To obtain a prediction for a sample with
x1 = 0.6, trace the path from the root to its leaf; that leaf outputs 0.1106, which is the average
target value among the 110 training instances that reach it. For those instances the mean squared
error is 0.0151.

The predictions from this model are visualized in Figure 5.7, with results shown for trees of
depth 2 and 3. The deeper tree partitions the input space into more regions, with each region’s
predicted value being the average target value of the instances it encompasses. The model attempts
to organize the regions such that the instances within each are as close as possible to their predicted
value.

Figure 5.7: Comparison of predictions from two Decision Tree regression models with varying
depths.

The CART algorithm for regression trees aims to minimize the MSE when splitting the training
set, similar to how it minimizes impurity in classification tasks. The cost function minimized by
the algorithm is represented as

J(k, tk) =
mleft

m
MSEleft +

mright

m
MSEright. (5.6)
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Knowing that,

MSEnode = ∑
i∈node

(
ŷnode − y(i)

)2
(5.7)

and
ŷnode =

1
mnode

∑
i∈node

y(i). (5.8)

Similar to classification, Decision Trees for regression can overfit if not properly regularized.
Without regularization, the predictions, as depicted on the left of Figure 5.8, can fit the training
data excessively. By setting min_samples_leaf to 15, a more generalized model is achieved, as
shown on the right in the same figure.

Figure 5.8: Impact of regularization through setting the minimum number of samples in a leaf on
a Decision Tree regression model.

Example 5.2 Decision Tree Regression
This example uses Scikit-Learn’s DecisionTreeRegressor to fit a non-linear relationship
between input and output data. A tree of depth 4 is trained on noisy linear data and visualized
using Graphviz to show how the regression model partitions the input space.

5.4 Instability
While Decision Trees offer simplicity, interpretability, versatility, and power, they come with cer-
tain drawbacks. A notable limitation is their preference for orthogonal decision boundaries, which
makes them highly sensitive to the orientation of the data. For instance, Figure 5.9 illustrates how a
simple linearly separable dataset can be perfectly split by a Decision Tree in its original alignment,
whereas a 45° rotation results in a convoluted decision boundary. Despite perfect fits to their re-
spective training sets, the rotated tree’s model is likely to perform poorly on unseen data. Utilizing
Principal Component Analysis (PCA) can often mitigate this issue by reorienting the data more
suitably.
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Figure 5.9: Sensitivity to training set rotation. Decision trees create a single clean split on the orig-
inal data (left), but after a 45◦ rotation they must build a jagged, multi-step boundary; illustrating
their sensitivity to feature orientation.

More broadly, Decision Trees are sensitive to small variations in training data. For instance,
changing the seed of the random number generator can lead to a substantially different model, as
shown in Figure 5.10. This variability is partly due to the stochastic nature of the Scikit-Learn’s
training algorithms; different models may result from the same data unless the random_state
hyperparameter is fixed.

Figure 5.10: Decision Tree Sensitivity to initial conditions, showing: (a) random number generator
seeded with “1”, and: (b) random number generator seeded with “2”. a
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5.5 Random Forest

Figure 5.11: Random forest with majority voting. a

Random Forests reduce the high variance of individual decision trees by building many trees on
bootstrap samples of the training data and then averaging their outputs. Each tree is grown with a
random subset of input features, so the ensemble decorrelates the trees and improves generalisa-
tion. For classification problems the forest predicts the class that receives the majority vote, while
for regression it returns the mean of the trees’ numeric predictions. This bagging strategy limits
overfitting and usually yields better performance than a single tree, although it often falls short of
the accuracy achieved by gradient-boosted ensembles. Model quality still depends on the data’s
size, noise level, and feature interactions, and on hyperparameters such as the number of trees, the
maximum depth, and the number of features considered at each split.

a“2” is the author’s preferred random number seed.
aTseKiChun, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 5.1 Decision Tree Classifier
5   
6   @author: Austin R.J. Downey
7   """
8   
9   import IPython as IP

10   IP.get_ipython().run_line_magic('reset', '-sf')
11   
12   import numpy as np
13   import matplotlib.pyplot as plt
14   import sklearn as sk
15   from sklearn.datasets import load_iris
16   from sklearn.tree import export_graphviz
17   import graphviz as graphviz
18   
19   plt.close('all')
20   
21   
22   #%% Load your data
23   
24   # We will use the Iris data set.  This dataset was created by biologist Ronald
25   # Fisher in his 1936 paper "The use of multiple measurements in taxonomic 
26   # problems" as an example of linear discriminant analysis
27   iris = sk.datasets.load_iris()
28   
29   # for simplicity, extract some of the data sets
30   X = iris['data'] # this contains the length of the petals and sepals
31   Y = iris['target'] # contains what type of flower it is
32   Y_names = iris['target_names'] # contains the name that aligns with the type of the 

flower
33   feature_names = iris['feature_names'] # the names of the features
34   
35   #%% Build the model
36   
37   # train the decision tree
38   tree_clf = sk.tree.DecisionTreeClassifier(max_depth=3)
39   X_petal = X[:,2:]
40   tree_clf.fit(X_petal, Y)
41   
42   
43   #%% Visualize the decision tree
44   
45   #create the export file for graphviz and export it. The file is exported as a 
46   #.DOT file and can be viewed in an online viewer 

https://dreampuf.github.io/GraphvizOnline/
47   export_graphviz(
48   tree_clf,
49   out_file="tree_clf.dot",
50   feature_names=feature_names[2:],
51   class_names=Y_names,
52   rounded=True,
53   filled=True
54   )
55   
56   # We can load the file back in
57   s = graphviz.Source.from_file('tree_clf.dot')
58   
59   # look at what is inside it. Also, just typing s in the console will diplay the image
60   print(s)
61   
62   # export the image to a jpg
63   s.render('tree_clf', format='jpg',view=True)
64   
65   #%% Predict the class for any petal size

ML for Eng. Problem Solving 5.6 Examples
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66   
67   size = [[7, 2.5]]
68   print(tree_clf.predict_proba(size))
69   print(iris.target_names)
70   
71   
72   # plot the new data point over the Iris dataset
73   plt.figure()
74   plt.grid(True)
75   plt.scatter(X[Y==0,2],X[Y==0,3],marker='o',label=Y_names[0],zorder=2)
76   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',label=Y_names[1],zorder=2)
77   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',label=Y_names[2],zorder=2)
78   plt.scatter(size[0][0],size[0][1],s=300,marker='*',label='new data point',zorder=2)
79   plt.xlabel(feature_names[2])
80   plt.ylabel(feature_names[3])
81   plt.legend(framealpha=1)
82   plt.tight_layout()
83   
84   
85   
86   
87   
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 5.2 Decision Tree Regression
5   
6   @author: Austin R.J. Downey
7   """
8   
9   import IPython as IP

10   IP.get_ipython().run_line_magic('reset', '-sf')
11   
12   import numpy as np
13   import matplotlib.pyplot as plt
14   import sklearn as sk
15   import graphviz as graphviz
16   from sklearn.tree import export_graphviz
17   
18   plt.close('all')
19   
20   
21   #%% Train and plot a decision tree regression model
22   
23   # build the data
24   m = 200
25   X = np.random.rand(m, 1)
26   y = 5 * X
27   y = y + np.random.randn(m, 1) / 10
28   
29   # train the model
30   tree_reg = sk.tree.DecisionTreeRegressor(max_depth=3)
31   tree_reg.fit(X, y)
32   
33   x_model = np.linspace(0, 1, 100).reshape(-1, 1)
34   y_model = tree_reg.predict(x_model)
35   
36   plt.figure()
37   plt.plot(X, y, ".",label='data')
38   plt.plot(x_model, y_model, "-", label="model")
39   plt.xlabel("$x$")
40   plt.ylabel("$y$")
41   plt.legend()
42   
43   #%% Plot the regression tree
44   
45   # create the export file for graphviz and export it. The file is exported as a 
46   # .DOT file and can be viewed in an online viewer 

https://dreampuf.github.io/GraphvizOnline/
47   export_graphviz(
48   tree_reg,
49   out_file="tree_reg",
50   rounded=True,
51   filled=True
52   )
53   
54   # We can load the file back in
55   s = graphviz.Source.from_file('tree_reg')
56   s.render('tree_reg', format='jpg',view=True)
57   
58   
59   
60   
61   
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6 Support Vector Machines
The core idea of Support Vector Machines becomes clear when viewed geometrically. Figure 6.1
shows a slice of the iris dataset containing two linearly separable species. In the left panel two
conventional linear classifiers are drawn; although both label every training point correctly, their
separating lines sit very close to several observations, so even a small perturbation could lead to
misclassifications on new data. The right panel plots the boundary produced by an SVM. The
solid line still splits the classes cleanly, but it is positioned to maximise the distance to the nearest
points, leaving the widest possible “street” (bounded by the dashed parallels). The samples that lie
on these margins are the support vectors. This strategy, called large margin classification, usually
delivers models that generalise better than those that merely separate the training set.

Figure 6.1: Large margin classification.

Observe that the addition of further training instances outside the “street” does not influence
the decision boundary; it is entirely shaped by the instances situated on the boundary’s edge. These
pivotal instances are termed support vectors and are highlighted with circles in Figure 6.1.

NOTE
The sensitivity of SVMs to feature scales is evident in Figure 6.2. In the left plot, the ver-

tical dimension greatly outweighs the horizontal dimension, resulting in a nearly horizontal
“street.” However, after applying feature scaling such as using Scikit-Learn’s StandardScaler
the decision boundary becomes more appropriate, as illustrated in the right plot.
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Figure 6.2: Sensitivity of support vectors to feature scaling.

6.1 Linear SVM Classification
Hard margin classification demands that all instances be correctly classified without any margin
violations. This strict approach faces two significant challenges:

• It is only feasible when the data is linearly separable.

• It is highly sensitive to outliers.

Figure 6.3 illustrates these challenges using the iris dataset with an added outlier. On the left,
achieving a hard margin is impossible due to the outlier. On the right, although a decision boundary
is found, it deviates substantially from the optimal boundary shown in Figure 6.1 and is less likely
to perform well on new data.

Figure 6.3: Support vector machines showing (left) an un-separable case, and (right) a separable
case with two data points supporting the curbs of the support vector machine.
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To mitigate the limitations of hard margin classification, a more adaptable model, known as soft
margin classification, is often employed. The goal here is to achieve an optimal balance between
maximizing the margin width and minimizing margin violations, where instances might fall into
the margin or on the incorrect side.

Scikit-Learn’s SVM implementations facilitate this balance through the hyperparameter C. A
smaller value of C results in a wider margin but allows more margin violations, which is beneficial
for model flexibility. Conversely, a larger C value tightens the margin, reducing margin violations
but at the risk of a less flexible model. Figure 6.4 demonstrates this trade-off: the left plot with a
low C value

Figure 6.4: SVM margin sizes for different C values.

NOTE
Overfitting in an SVM model can often be addressed by reducing the C value, which

increases regularization.

In earlier chapters we placed every model parameter in a single vector θ : the first entry θ0
acted as the bias, while θ1, . . . ,θn were the feature weights, and each input was augmented with
a constant bias feature x0 = 1. In this chapter we adopt the notation most common for SVMs.
The bias is written as b, the weight vector as w, and no extra bias feature is appended to the input
vectors.
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6.1.1 Decision Function and Predictions

A linear SVM classifier determines the class of a new instance x by calculating the decision func-
tion

wTx+b = w1x1 + · · ·+wnxn +b. (6.1)

If the outcome is positive, the predicted class ŷ is the positive class (1); otherwise, it is the negative
class (0). This is written as

ŷ =

{
0 if wTx+b < 0,
1 if wTx+b ≥ 0.

(6.2)

Figure 6.5 plots the decision function for a model with two features, so the surface is a plane in
R2. The thick solid line marks the decision boundary where the function equals zero. The dashed
lines show the loci where the function equals 1 and −1; they run parallel to the boundary and sit
at equal distance from it, outlining the margin. Training a linear SVM adjusts w and b to make
this margin as wide as possible while either prohibiting margin violations (hard margin) or keeping
them small through a penalty term (soft margin).

Figure 6.5: Decision function for the Iris Dataset showing how the decision function h cuts through
the feature space.
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6.1.2 Training Objective

The slope of the decision function corresponds to the norm of the weight vector, ∥w∥. Halving
this slope causes the decision boundary margins, where the decision function equals ±1, to double
in distance from the decision boundary. Effectively, reducing the norm of w by half doubles the
margin. This geometric interpretation is perhaps simpler to visualize in two dimensions, as shown
in Figure 6.6. Thus, minimizing ∥w∥ maximizes the margin.

Figure 6.6: The margin is dependent on the value of the weight vector where a smaller weight
vector results in a larger margin and vise versa.

To achieve a large margin while enforcing that no data points fall within the margin (hard
margin), we ensure the decision function exceeds +1 for all positive training instances and is less
than -1 for all negative instances. Let t(i) equal -1 for negative instances (y(i) = 0) and +1 for
positive ones (y(i) = 1). The constraints then require

t(i)(wTx(i)+b)≥ 1 (6.3)

for all training instances. This forms the basis of the hard margin linear SVM classifier optimiza-
tion problem:

minimize
w,b

1
2

wTw

subject to t(i)(wTx(i)+b)≥ 1 for i = 1,2, . . . ,m
(6.4)

NOTE
The objective function minimized is 1

2wTw, equivalent to 1
2∥w∥2. This formulation is cho-

sen over minimizing ∥w∥ directly because 1
2∥w∥2 offers a straightforward derivative, simply

w, facilitating gradient calculations. In contrast, ∥w∥ lacks differentiability at w = 0, posing
challenges for optimization algorithms, which typically require smooth, differentiable func-
tions to ensure effective optimization.
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To formulate the soft margin objective, it is necessary to introduce a slack variable ζ (i) ≥ 0 for
each instance. This variable, ζ (i), quantifies the permissible margin violation for the ith instance.
Consequently, we face dual objectives: minimizing the slack variables to reduce margin violations
and minimizing 1

2wTw to maximize the margin. The hyperparameter C plays a crucial role here,
enabling a balance between these competing objectives. The introduction of C transforms our task
into a constrained optimization problem.

minimize
w,b,ζ

1
2

wTw+C
m

∑
i=1

ζ
(i)

subject to t(i)(wTx(i)+b)≥ 1−ζ
(i) and ζ

(i) ≥ 0 for i = 1, 2, · · · , m

(6.5)

6.1.3 Quadratic Programming

Both hard margin and soft margin problems are examples of convex quadratic optimization prob-
lems with linear constraints, commonly referred to as Quadratic Programming (QP) problems. QP
involves solving optimization problems where the objective is a quadratic function and the con-
straints are linear. This form of programming, established in the 1940s, predates and is distinct
from “computer programming,” and is sometimes more descriptively termed “quadratic optimiza-
tion” to avoid confusion.

A variety of techniques available through off-the-shelf solvers can address these QP problems,
though they extend beyond the scope of this text. The general formulation of a QP problem is as
follows:

minimize
p

1
2

pTHp+ fTp

subject to Ap ≤ b
(6.6)

Here, p is an np-dimensional vector (where np is the number of parameters), H is an np×np matrix,
f is an np-dimensional vector, A is an nc×np matrix (with nc being the number of constraints), and
b is an nc-dimensional vector.

Equation 6.6 defines a standard quadratic program with constraints of the form Ap ≤ b. For
training a hard margin linear SVM, this setup can be used by choosing parameters that encode the
SVM objective and constraints. The solution vector p contains both the bias term and the feature
weights. Using this knowledge, a standard QP solver can be applied directly to find the optimal
SVM classifier.

Example 6.1 Support Vector Machine Classification
This example applies a linear Support Vector Machine (SVM) classifier to distinguish

Iris-Virginica flowers based on petal length and width. The decision boundary is derived after
scaling the data, and margins are visualized. Misclassified instances within the margin are
identified and marked. The model’s performance is assessed using a confusion matrix and F1
score.
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6.2 Nonlinear SVM Classification

Figure 6.7: Nonlinear SVM example illustration a

While linear SVM classifiers are quite effective and perform exceptionally well in various sce-
narios, many datasets are far from being linearly separable. One strategy to address non-linear
datasets is to introduce additional features, such as polynomial feature. Adding features can some-
times transform the dataset into one that is linearly separable. A representation of this technique is
shown in 6.7.

A simple example of converting non-linearly separable variables is shown in figure 6.8 where
the left plot displays a simple dataset with a single feature x1. Clearly, this dataset is not linearly
separable. However, by adding another feature x2 = (x1)

2, the dataset becomes perfectly linearly
separable in two dimensions.

Figure 6.8: Illustration of SVM in higher dimensions

aMachine Learner, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons
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You can implement this idea in Scikit-Learn by creating a pipeline that applies a Polynomial
Features transformer (introduced in the Regression Chapter), followed by a StandardScaler and
a LinearSVC. The approach works nicely on the moons dataset, a toy binary-classification problem
in which the samples trace two interleaving half-circles, as illustrated in Figure 6.9. You can
generate this dataset with the function make_moons().

Figure 6.9: Demonstration of a SVM classifier with polynomial features.

Example 6.2 Nonlinear Classification
This example demonstrates nonlinear classification leveraging LinearSVC in a pipeline with
preprocessing.PolynomialFeatures using the make_moons dataset. A polynomial fea-
ture transformation is combined with a linear SVM to classify the data, and the resulting
decision boundaries are visualized.

6.2.1 Kernel trick

While adding polynomial features is straightforward and enhances the performance of various
Machine Learning algorithms (not limited to SVMs), it presents limitations. Specifically, lower-
degree polynomials may not adequately handle complex datasets, and higher-degree polynomials
significantly increase the feature count, slowing down the model.

SVMs offer a unique solution through a remarkable mathematical technique known as the
kernel trick, which allows for the benefits of high-degree polynomial features without actually
expanding the feature space, thereby avoiding a rapid increase in computation. This kernel trick is
incorporated within the SVC class.

In the dual form of an SVM the explicit dot product of two input vectors

xTz (6.7)
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is replaced by a kernel function
k(x,z), (6.8)

where x and z are n-dimensional feature vectors representing any two data points in the training set.
This substitution lets the algorithm construct a linear separator in a (possibly infinite-dimensional)
feature space while all calculations still occur in the original input coordinates.

Figure 6.10 shows configured SVM classifiers using a 3rd and 3th degree polynomial kernel;
on the left and right respectively. Adjusting the polynomial degree can help manage model fit:
reducing the degree may prevent overfitting, whereas increasing it may be necessary for underfit-
ting scenarios. The ‘coef0‘ hyperparameter is crucial as it determines the influence of high versus
low-degree polynomials in the model.

NOTE
A typical method for determining optimal hyperparameter settings involves utilizing grid

search techniques. Starting with a broad, coarse grid search to quickly narrow down potential
candidates, followed by a more detailed, finer grid search centered on these promising values
often yields faster results. Additionally, understanding the function and influence of each
hyperparameter aids in efficiently targeting the most relevant areas of the hyperparameter
space.

Figure 6.10: SVM polynomial kernel

6.2.2 Standard Kernels

Three kernels cover the vast majority of practical cases.

• The polynomial kernel captures interactions between input features up to a chosen degree d:

kpoly
(
x,z

)
=
(
xTz+ c

)d (6.9)

where c≥0 is a constant offset. It is effective when domain knowledge suggests that a low-
order combination of variables explains the target. Keep d modest (typically d ≤ 5) and
standardise inputs to avoid exploding feature dimensions and overfitting.
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• The radial basis function (RBF) kernel builds smooth, highly flexible decision boundaries:

krbf
(
x,z

)
= exp

(
−γ∥x− z∥2) (6.10)

with width parameter γ > 0. A large γ makes the surface too flat (underfitting), while a small
γ lets every point carve its own pocket (overfitting). Tune C and γ jointly, typically on a
logarithmic grid, after x-score standardising the features.

• The sigmoid kernel adds an S-shaped non-linearity to the inner product:

ksig
(
x,z

)
= tanh

(
κ xTz+θ

)
(6.11)

where κ controls the slope and θ the offset. Although useful for some sparse or text data,
this kernel is not always positive-semidefinite, so ensure your software handles the resulting
optimisation safely.

Example 6.3 Polynomial Kernel Trick
This example uses the kernel trick to enable an SVM to classify non-linearly separable data
using SVC (not LinearSVC). A third-degree polynomial kernel is applied to the moons dataset
using Scikit-Learn’s Pipeline and SVC tools, producing a curved decision boundary that
cleanly separates the classes.

NOTE
Begin with the RBF kernel as a strong default, explore polynomial kernels when you

expect specific interaction orders, and treat the sigmoid option as experimental unless you
have evidence it helps.

6.3 Computational Complexity
Scikit-Learn provides two main SVM classifiers that trade accuracy for speed in different ways.
LinearSVC is optimized for large, high-dimensional data when a linear decision boundary is ade-
quate; SVC sacrifices runtime for the expressive power of kernels and thus handles complex, nonlin-
ear patterns. Table 2 highlights how these priorities translate into computational costs and practical
constraints and compares them to SGDClassifier for reference.

Table 2: Key characteristics of three Scikit-Learn SVM classifier implementations.
Trule class time complexity out-of-core support scaling required kernel trick

LinearSVC O(m×n) no yes no
SVC O(m2 ×n) to O(m3 ×n) no yes yes
SGDClassifier O(m×n) yes yes no

LinearSVC builds on the liblinear solver and is limited to linear decision boundaries. Be-
cause it does not apply the kernel trick, its training cost grows almost linearly with both the number
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of samples m and features n, i.e. O(mn). Convergence is controlled by the tolerance parameter tol
(denoted ε in the literature); the default value is usually sufficient, but smaller tolerances can be
specified when higher accuracy is critical.

SVC, in contrast, relies on libsvm and does support kernel functions. Its computational burden
is markedly heavier, between O(m2n) and O(m3n) in practice, so training becomes prohibitive
once the dataset reaches the hundreds-of-thousands range. Nevertheless, SVC excels on smaller or
medium-sized problems that demand nonlinear decision surfaces. Runtime also scales with the
average count of non-zero features per instance, meaning sparse high-dimensional inputs remain
tractable.

6.4 SVM Regression
Support Vector Regression (SVR) adapts the SVM idea to regression by surrounding the prediction
curve with a tube of width ε; points outside this tube incur a penalty and the optimizer keeps the
tube as flat as possible while allowing a limited number of violations governed by the regularization
constant C. Conceptually this reverses the classification goal: instead of widening a margin to
separate two classes, SVR encourages the data to lie inside the margin, making ε the principal
knob that controls how loose the fit may be for both linear and kernel-based models.

6.4.1 Linear SVR
The presence of additional training instances within the margin does not influence the predictions
of the model, rendering it ε-insensitive. For linear SVM Regression tasks, the LinearSVR class
from Scikit-Learn can be utilized. For instance, Figure 6.11 demonstrates two linear SVM Regres-
sion models trained on random linear data; one features a wide margin (ε = 1.5), and the other a
narrower margin (ε = 0.5).

Figure 6.11: SVM Regression models with different ε values.

For data that follow an approximately linear trend, the LinearSVR class in Scikit-Learn solves
the primal problem directly. It scales in O(mn) time with m samples and n features, making it a
practical choice for large data sets where a simple linear fit is adequate.
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6.4.2 Kernel SVR

When the relationship is non-linear, the SVR class employs the kernel trick:

f (x) =
m

∑
i=1

(αi −α
∗
i )k(xi,x)+b, (6.12)

where k(·, ·) is typically RBF or polynomial. Figure 6.12 shows a 2nd-degree polynomial kernel
capturing quadratic structure under various regularisation levels.

The Scikit-lern SVR class, supporting the kernel trick and acting as the regression counter-
part to the SVC class, performs well with small to medium-sized datasets but slows considerably
as dataset size increases. In contrast, the LinearSVR class, akin to the LinearSVC class, scales
linearly with the size of the training set.

Figure 6.12: SVM regression with a 2nd-degree polynomial kernel, showcasing different regular-
ization levels.

Example 6.4 SVM Polynomial Regression
This example fits a non-linear regression curve to noisy quadratic data using Support Vec-

tor Regression (SVR) with a polynomial kernel. It highlights how SVR models can handle
non-linear relationships by introducing a margin of tolerance.
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1   """
2   Example 6.1 Support Vector Machine Classification
3   @author: Austin R.J. Downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import numpy as np

10   import matplotlib.pyplot as plt
11   import sklearn as sk
12   from sklearn import datasets
13   from sklearn import svm
14   from sklearn import pipeline
15   
16   cc = plt.rcParams['axes.prop_cycle'].by_key()['color']
17   plt.close('all')
18   
19   
20   # This code will build and train a support vector machine classifier with soft 
21   # for the iris flower data set.
22   
23   #%% Load your data
24   
25   # We will use the Iris data set.  This dataset was created by biologist Ronald
26   # Fisher in his 1936 paper "The use of multiple measurements in taxonomic 
27   # problems" as an example of linear discriminant analysis
28   iris = sk.datasets.load_iris()
29   
30   # for simplicity, extract some of the data sets
31   X = iris['data'] # this contains the length of the petals and sepals
32   Y = iris['target'] # contains what type of flower it is
33   Y_names = iris['target_names'] # contains the name that aligns with the type of the 

flower
34   feature_names = iris['feature_names'] # the names of the features
35   
36   # plot the Sepal data
37   plt.figure(figsize=(6.5,3))
38   plt.subplot(121)
39   plt.grid(True)
40   plt.scatter(X[Y==0,0],X[Y==0,1],marker='o',zorder=10)
41   plt.scatter(X[Y==1,0],X[Y==1,1],marker='s',zorder=10)
42   plt.scatter(X[Y==2,0],X[Y==2,1],marker='d',zorder=10)
43   plt.xlabel(feature_names[0])
44   plt.ylabel(feature_names[1])
45   
46   plt.subplot(122)
47   plt.grid(True)
48   plt.scatter(X[Y==0,2],X[Y==0,3],marker='o',label=Y_names[0],zorder=10)
49   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',label=Y_names[1],zorder=10)
50   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',label=Y_names[2],zorder=10)
51   plt.xlabel(feature_names[2])
52   plt.ylabel(feature_names[3])
53   plt.legend(framealpha=1)
54   plt.tight_layout()
55   
56   #%% Extract just the petal space of the code
57   
58   X_petal = X[50:, (2, 3)] # petal length, petal width
59   y_petal = Y[50:] == 2
60   
61   #%% Build and train the SVM classifier 
62   
63   # build handles to regularize the model data and a Linear Support Vector Classification.
64   scaler = sk.preprocessing.StandardScaler()
65   svm_clf = sk.svm.LinearSVC(C=1000000,max_iter=10000)
66   
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67   # build the model pipeline of regularization and a Linear Support Vector Classification.
68   scaled_svm_clf = sk.pipeline.Pipeline([
69   ("scaler", scaler),
70   ("linear_svc", svm_clf),
71   ])
72   
73   # train the data
74   scaled_svm_clf.fit(X_petal, y_petal)
75   
76   
77   #%% Build and plot the decision boundary along with the curbs
78   
79   # Convert to unscaled parameters as the SVM is solved in a scaled space.
80   w = svm_clf.coef_[0] / scaler.scale_
81   b = svm_clf.decision_function([-scaler.mean_ / scaler.scale_])
82   
83   # At the decision boundary, w0*x0 + w1*x1 + b = 0
84   # => x1 = -w0/w1 * x0 - b/w1
85   x0 = np.linspace(4, 5.9, 200)
86   decision_boundary = -w[0]/w[1] * x0 - b/w[1]
87   
88   margin = 1/w[1]
89   curbs_up = decision_boundary + margin
90   curbs_down = decision_boundary - margin
91   
92   #%% Plot the data and the classifier
93   
94   plt.figure()
95   plt.grid(True)
96   plt.scatter(X[Y==1,2],X[Y==1,3],marker='s',label=Y_names[1],zorder=10)
97   plt.scatter(X[Y==2,2],X[Y==2,3],marker='d',label=Y_names[2],zorder=10)
98   plt.xlabel(feature_names[2])
99   plt.ylabel(feature_names[3])

100   plt.legend(framealpha=1)
101   plt.tight_layout()
102   
103   # plot the decision boundy and margins
104   plt.plot(x0, decision_boundary, "k-", linewidth=2)
105   plt.plot(x0, curbs_up, "k--", linewidth=2)
106   plt.plot(x0, curbs_down, "k--", linewidth=2)
107   
108   
109   #%% Find the misclassified instancances and add a circle to mark them
110   
111   # Find support vectors (LinearSVC does not do this automatically) and add them
112   # to the SVM handle
113   t = y_petal * 2 - 1 # convert 0 and 1 to -1 and 1
114   support_vectors_idx = (t * (X_petal.dot(w) + b) < 1) # find the locations
115   # of the miss classifed data points that fall withing the vectors
116   svs = X_petal[support_vectors_idx]
117   
118   plt.scatter(svs[:, 0], svs[:, 1], s=180,marker='o', facecolors='none',edgecolors='k')
119   
120   #%% compute the confusion matirx and F1 score
121   
122   y_predicted = scaled_svm_clf.predict(X_petal)
123   confusion_matrix = sk.metrics.confusion_matrix(y_predicted, y_petal)
124   f1_score = sk.metrics.f1_score(y_predicted, y_petal)
125   
126   print(f1_score)
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1   """
2   Example 6.2 Polynomial Features
3   @author: Austin R.J. Downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import numpy as np

10   import matplotlib.pyplot as plt
11   import sklearn as sk
12   from sklearn import datasets
13   from sklearn import pipeline
14   from sklearn import svm
15   
16   plt.close('all')
17   
18   #%% Build and plot the data
19   
20   # build the data
21   X, y = sk.datasets.make_moons(n_samples=100, noise=0.25, random_state=2)
22   
23   plt.figure()
24   plt.plot(X[:,0][y==0],X[:,1][y==0],'s')
25   plt.plot(X[:,0][y==1],X[:,1][y==1],'d')
26   plt.xlabel("$x_1$")
27   plt.ylabel("$x_2$")
28   
29   #%% SVM polynominal features
30   svm_clf = sk.pipeline.Pipeline([
31   ("poly_features", sk.preprocessing.PolynomialFeatures(degree=3)),
32   ("scaler", sk.preprocessing.StandardScaler()),
33   ("svm_clf", sk.svm.LinearSVC(C=10))
34   ])
35   svm_clf.fit(X, y)
36   
37   # make the 2d space for the color
38   x1 = np.linspace(-2, 3, 200)
39   x2 = np.linspace(-2, 2, 100)
40   x1_grid, x2_grid = np.meshgrid(x1, x2)
41   
42   # calculate the binary decions and predection values
43   X2 = np.vstack((x1_grid.ravel(), x2_grid.ravel())).T
44   y_pred = svm_clf.predict(X2).reshape(x1_grid.shape)
45   y_decision = svm_clf.decision_function(X2).reshape(x1_grid.shape)
46   
47   con_lines = [-30,-20,-10,-5,-2,-1,0,1,2,5,10,20,30]
48   
49   
50   # plot the figure
51   plt.figure()
52   # provide the solid background color for classification 
53   plt.contourf(x1_grid, x2_grid, y_pred, cmap=plt.cm.brg, alpha=0.2)
54   # add the contour colors for the threshold
55   plt.contourf(x1_grid, x2_grid, y_decision, con_lines, cmap=plt.cm.brg, alpha=0.1)
56   # add the contour lines
57   contour = plt.contour(x1_grid, x2_grid, y_decision, con_lines, cmap=plt.cm.brg)
58   plt.clabel(contour, inline=1, fontsize=12)
59   plt.plot(X[:, 0][y==0], X[:, 1][y==0], "s")
60   plt.plot(X[:, 0][y==1], X[:, 1][y==1], "d")
61   plt.xlabel("$x_1$")
62   plt.ylabel("$x_2$")
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1   #!/usr/bin/env python3
2   # -*- coding: utf-8 -*-
3   """
4   Example 6.3 SVM polynomial kernel 
5   
6   @author: Austin R.J. Downey
7   """
8   
9   import IPython as IP

10   IP.get_ipython().run_line_magic('reset', '-sf')
11   
12   import numpy as np
13   import matplotlib.pyplot as plt
14   import sklearn as sk
15   from sklearn import datasets
16   from sklearn import pipeline
17   from sklearn import svm
18   
19   plt.close('all')
20   
21   
22   #%% Build and plot the data
23   
24   X, y = sk.datasets.make_moons(n_samples=100, noise=0.25, random_state=2)
25   
26   plt.figure()
27   plt.plot(X[:,0][y==0],X[:,1][y==0],'s')
28   plt.plot(X[:,0][y==1],X[:,1][y==1],'d')
29   plt.xlabel("$x_1$")
30   plt.ylabel("$x_2$")
31   plt.grid(True)
32   
33   
34   #%% SVM polynominal features
35   svm_clf = sk.pipeline.Pipeline([
36   ("scaler", sk.preprocessing.StandardScaler()),
37   ("svm_clf", sk.svm.SVC(kernel="poly", degree=3, coef0=1, C=100))
38   ])
39   svm_clf.fit(X, y)
40   
41   
42   #%% Prepare fro plotting
43   # make the 2d space for the color
44   x1 = np.linspace(-2, 3, 200)
45   x2 = np.linspace(-2, 2, 100)
46   x1_grid, x2_grid = np.meshgrid(x1, x2)
47   
48   # calculate the binary decions and predection values
49   X2 = np.vstack((x1_grid.ravel(), x2_grid.ravel())).T
50   y_decision = svm_clf.decision_function(X2).reshape(x1_grid.shape)
51   
52   # plot the figure (the show up in the figure enviorment defined above
53   con_lines = [-30,-20,-10,-5,0,5,10,20,30]
54   contour = plt.contour(x1_grid, x2_grid, y_decision, con_lines, cmap=plt.cm.brg)
55   plt.clabel(contour, inline=1, fontsize=12)
56   
57   
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1   """
2   Example 6.4 SVM Regression
3   @author: Austin R.J. Downey
4   """
5   
6   import IPython as IP
7   IP.get_ipython().run_line_magic('reset', '-sf')
8   
9   import numpy as np

10   import matplotlib.pyplot as plt
11   import sklearn as sk
12   from sklearn import svm
13   
14   
15   plt.close('all')
16   
17   #%% build the data sets
18   np.random.seed(2) # 2 and 6 are pretty good
19   m = 100
20   X = 6 * np.random.rand(m,1) - 3
21   y = 0.5 * X**2 + X + 2 + np.random.randn(m,1)
22   y = y.ravel()
23   
24   # plot the data
25   plt.figure()
26   plt.grid(True)
27   plt.plot(X,y,'o')
28   plt.xlabel('x')
29   plt.ylabel('y')
30   
31   
32   #%% SVM regression
33   
34   svm_reg = sk.svm.SVR(kernel="rbf", degree=3, C=1, epsilon=0.8, gamma="scale")
35   # Try poly kernal, and different degree, C, and epsilon values
36   svm_reg.fit(X, y)
37   x1 = np.linspace(-3, 3, 100).reshape(100, 1)
38   y_pred = svm_reg.predict(x1)
39   
40   
41   # plot the SVR model on top of the existing data
42   plt.plot(x1, y_pred, "-", linewidth=2, label=r"$\hat{y}$")
43   plt.plot(x1, y_pred + svm_reg.epsilon, "g--",label='curb')
44   plt.plot(x1, y_pred - svm_reg.epsilon, "g--")
45   plt.scatter(X[svm_reg.support_], y[svm_reg.support_], s=100,marker='o', facecolor='none',

edgecolors='gray')
46   plt.legend(loc="upper left")
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